Archive for the ‘Academia’ Category

By Harry {doc} Babad, © Copyright 2012, All Rights Reserved.

Introduction

This month I’m temporarily reverting back to earlier tid-bit type entries because I’ve be deluged by input. Being an information junkie requires not only a large hard drive, but also a fairly good memory – so far so good!   Enjoy

Note, many of the technologies I share are in various stage of first, development, and are often far from being a commercial success. Their inventors and supporters still have to prove that they are reliable, durable and scalable, Remember There Ain’t No free Lunch and silver bullets too often turn to lead.

When and if you Google them in depth, you will find studies saying they are capable of being commercialized and often as many other studies that are more skeptical because there is no easy way to for them into our systems.

I always, as 75 year old cynic, find it appropriate, to step back as I read and WIIFT – No it’s not something new to smoke; just the compulsion to ask what’s in it for them. It’s okay to have a hidden agenda, but agenda’s too hidden discomfort me. In addition, most have no relationship to solving the problem that is being bragged about. I also object to TGTBT (To good to be true) since there never a free lunch and energy runs downhill.

I don’t usually do items with direct political implications, but the items below rubbed my sense of WIIFT.  Recently thoughts about announcements and new service information as well as headlines picked up by the news services. My thought — If its slick and there are no cross checked reference details, it’s probably a scam – legal perhaps but a scam. — As discussed in a recent Bloomberg Business Week:How about rating agencies, Moody’s, S&P, and Fitch’s, glowing credit rating (e.g., investor grades and better) just days-weeks-or one or two months before the firms bankruptcy declarations.

AIG (insurance)

Enron (Energy)

World Com (Telecom), or

Bear Stearns (banking)

Lehman Brothers (banking)

Washington Mutual (banking).

CIT (Financial Services)

MF Global (Baking)

…Tens of Others

I’ve ignored the American auto industry because the Feds both bailed them out and they are back in the black to profitability and job creation. However their bond and shareholders have are still ‘forever’ losers.) I also ignored the airlines because there were not apparently fueled by mis-ratingsReferences:Credit Rating Agencies – Need For Reform — http://ezinearticles.com/?Credit-Rating-Agencies— Need-For-Reform&id=788696 and Credit Rating Agencies — http://rru.worldbank.org/documents/CrisisResponse/Note8.pdf

Why Did Anyone Listen to the Rating Agencies After Enron?http://www.law.umaryland.edu/academics/journals/jbtl/issues/4_2/4_2_283_Hill.pdf

Also See Notable Bankruptcies of 2008: Final Tally | Robert Salomon’s Blog: http://blog.robertsalomon.com/2009/01/05/notable-bankruptcies-of-2008-final-tally/

22 Largest Bankruptcies in World Historyhttp://www.instantshift.com/2010/02/03/22-largest-bankruptcies-in-world-history/

Major Bankruptcies Firms in the Business Historyhttp://www.infographicsposters.com/finance-infographics/major-bankruptcies-firms-in-the-business-history

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Titles, As Usual, in No Formal Order, for the New Snippets and Topics

  • German Wind Power Blows Nowhere — Germany’s Wind Power Revolution in the Doldrums
  • How Are Permissible Radiation Limits Set? — How Much Is Science, How Much “Prudence”?
  • Feds Assess Using Abandoned Federal and State Owned Sites For Their Renewable Energy Potential
  • The Discussion Continues: Nuclear Power in Japan (Part I) and A Plea for Common Sense when Prioritizing Environmental Concerns (Part II) How does the danger from the Fukushima Daiichi reactors compare to other health dangers, such as Tokyo pollution?
  • Trying to Change a Climate Skeptic’s Mind?  —  Don’t Bother
  • Feed-in Tariffs Best to Deal with Climate Change Says IPCC Working Group III Renewables
  • Economic And Emissions Impacts Of Electric Vehicles

 

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

German Wind Power Blows Nowhere — Germany’s Wind Power Revolution in the Doldrums

By Frank Dohmen and Alexander Jung

Fox News — January 02, 2012   

http://nation.foxnews.com/wind-power/2012/01/02/german-wind-power-blows-nowhere#ixzz1iVLl8hND

The construction of offshore wind parks in the North Sea has hit a snag with a vital link to the onshore power grid hopelessly behind schedule. The delays have some reconsidering the ability of wind power to propel Germany into the post-nuclear era.

Info

The generation of electricity from wind is usually a completely odorless affair. After all, the avoidance of emissions is one of the unique charms of this particular energy source.

But when work is completed on the Nordsee Ost wind farm, some 30 kilometers (19 miles) north of the island of Helgoland in the North Sea, the sea air will be filled with a strong smell of fumes: diesel fumes.

The reason is as simple as it is surprising. The wind farm operator, German utility RWE, has to keep the sensitive equipment — the drives, hubs and rotor blades — in constant motion, and for now that requires diesel-powered generators. Although the wind farm will soon be ready to generate electricity, it won’t be able to start doing so because of a lack of infrastructure to transport the electricity to the mainland and feed it into the grid. The necessary connections and cabling won’t be ready on time and the delay could last up to a year.

Read more: http://nation.foxnews.com/wind-power/2012/01/02/german-wind-power-blows-nowhere#ixzz1ko1pbebQ

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

How Are Permissible Radiation Limits Set?How Much Is Science, How Much “Prudence”?

U.S. Regulatory Report NCRP-136 examined the question of establishing permissible radiation limits.  After looking at the data, it concluded that most people who get a small dose of nuclear radiation are not harmed by it, and in fact are benefited.  That’s what the science said:  Most people would benefit by receiving more radiation.

But curiously, the report’s final conclusion was just the opposite.  It recommended that our regulations should be based on the premise that any amount of radiation, no matter how small, should be considered harmful.  It made that recommendation just to be “conservative” or “prudent.”

Let’s think about that.  Why is it prudent to do just the opposite of what the science indicates?  Why is exaggerating a panicky situation considered prudent?  I’ve never seen a good answer to that question.  Whatever the reasoning or implied logic, that’s where we’ve ended up.

We’ve had three uncontrolled releases of radioactivity from serious malfunctions of nuclear power plants: Three Mile Island, Chernobyl, and Fukushima.  In each of these, fear of radiation proved to be much more harmful than the effects of radiation itself.  And announcing that no amount of radiation is small enough to be harmless was certainly effective in creating and nurturing phobic fear of radiation, when none was justified by the facts.

In addition, the problem is aggravated by the fact that we’ve been told for sixty years (two human generations) that nuclear terror is infinitely more dreadful than any non-nuclear threat, particularly when you blur the distinction between power plants and bombs.

But what Fukushima tells us that this abstract, academic position looks very different when you’re telling people they can’t go home – perhaps for years, because, well, it seems more prudent that way, even though radiation hasn’t actually hurt anyone there.

Radiation expert Professor Wade Allison, author of “Radiation and Reason, has cast the question in a new light.  He suggests, let’s set the permissible radiation limit the same way we set all other safety limits.  Not by asking how little radiation we can get by with, but how much can we safely permit?  There’s no intention of lowering the safety margin, and it will not be lowered.  That’s not the issue.  It’s a matter of working with the scientific data, rather than from a generic fear not supported by the science.

Prof. Allison concludes that setting the permissible radiation limit, with a good margin of safety, results in an annual permissible level about 1000 times the current figure.

Disclosure: Ted also reviewed and provided feedback on the high-school level book Dr. R. A. Deju wrote called Nuclear is Hot published by the EnergySolutions Foundation.

References

How Are Permissible Radiation Limits Set? http://www.learningaboutenergy.com/2011/11/how-are-permissible-radiation-limits-set.html

By Ted Rockwell – You Tube Video Talk to the Japanese People http://www.youtube.com/watch?v=Uj8Pl1AiOuA&feature=youtu.be

About Ted Rockwellhttp://www.world-nuclear.org/sym/2005/rockwellbio.htm

–       – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Feds Assess Using Abandoned Federal and State Owned Sites For Their Renewable Energy Potential

The U.S. Environmental Protection Agency (EPA) and the National Renewable Energy Laboratory (NREL) have announced a plan to spend the next year to 18 months assessing 26 former landfills, brownfields and Superfund sites. The sites will be assessed for use as future solar photovoltaic, or other renewable projects.

The EPA plans to spend about $1 million on the assessment, according to the Associated Press. The assessment is part of the RE-Powering America’s Land Initiative that started in 2007. The analysis will determine the best renewable energy technology for the site, the potential energy generating capacity, the return on the investment and the economic feasibility of the renewable energy projects.

The 26 sites are located in New Mexico, Arizona, Colorado, Montana, Vermont, New York, New Jersey, Delaware, Georgia, Mississippi, Illinois, Indiana, Louisiana, Iowa, Missouri, Kansas, Nebraska, California, Oregon and Washington. The sites include an open-pit copper mine, a former lead smelter, and various hazardous materials contaminated landfills.

The EPA said there have already been more than 20 renewable energy projects built on contaminated sites, and more are under construction.

Doc sez, if the site is being used constructively, monitoring costs become an integral part of doing business, not a burden to their communities and American taxpayers.

 

References

Power Engineering, November 7, 2011

http://www.power-eng.com/articles/2011/11/abandoned_sites.html

Associated Press, By Susan Montoya Bryan, Nov 4, 2011

http://news.yahoo.com/feds-assess-sites-renewable-energy-potential-222043648.html

http://www.sify.com/finance/feds-assess-sites-for-renewable-energy-potential-news-environment+and+nature-llgvpdjiedb.html

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

The Discussion Continues: Nuclear Power in Japan

(Part I)How does the danger from the Fukushima Daiichi reactors compare to other health dangers, such as Tokyo pollution?

This began as an answer to one letter writer in Friends Journal, and grew. The information that surprised me most is the answer to this question: How does the danger from the Fukushima Daiichi reactors compare to other health dangers, such as Tokyo pollution?

Karen noted that there were a number of responses to Earthquake, Tsunami, and Nuclear Power in Japan posting.

It is long past time for Friends to begin a conversation on nuclear power and the much larger issue of how we know what to believe. Many among us insist that what is overwhelmingly the safest of the large sources of electricity should meet standards that no other energy source meets. Many Friends insist that the scientific community is lying about the safety of nuclear power. And overwhelmingly, we as a community insist that solutions to climate change be only the ones we like, even when scientists and policy experts find these solutions partial or even counterproductive.

Karen shares her ideas, to which I thoroughly subscribe in greater detail with the underlying thought “Our simplicity testimony calls for removing obstacles to walking joyfully with God. At the best of times, this is a challenge. Today, there can be little joy in the most optimistic scenarios for climate change. Additionally, our integrity queries don’t seem to raise some vital questions: everyone’s wrong, a lot. When am I wrong? How would I learn that I am wrong, that like-minded people are wrong? A single standard of truth does not mean checking on the web to confirm our hopes and fears.” — Read on check the link(s).

Reference

By Karen Street, The Energy Collective (The moderated community blog for energy, policy, and environment professionals), November 29, 2011.

http://theenergycollective.com/karenstreet/70925/discussion-continues-earthquake-tsunami-and-nuclear-power-japan

Part II:           A Plea for Common Sense when Prioritizing Environmental Concerns

In addition Ted Rockwell recently noted, in Technology Review, an MIT Science, Engineering and Technology and magazine that:

New lessons are beginning to emerge from Fukushima.  Each new concern leads to additional safety requirements.  But some contradictions are beginning to raise questions:  Amid tens of thousands of deaths from non-nuclear causes, not a single life-shortening radiation injury has occurred.  Not one!  And while some people in the housing area are wearing cumbersome rad-con suits, filtered gas-masks, gloves and booties, there are many people living carefree in other places like Norway, Brazil, Iran, India where folks have lived normal lives for countless generations with radiation levels as much as a hundred times greater than forbidden areas of the Fukushima homes.

At Fukushima this is no abstract issue.  People are being told they cannot return home for an indeterminate period – perhaps years.  And efforts to decontaminate their home sites may require stripping off all the rich topsoil and calling it Radwaste.  People who were evacuated have been reduced to economic poverty, clinical depression, and even suicide.

There is good scientific evidence that, except for some hot spots, the radiation levels at these home-sites are not life threatening.  The current restrictions are based on a desire to be “conservative.”  No matter how well intended, this “conservatism” is cruelly destructive.  The respected radiation authority Wade Allison, author of Radiation and Reason, has proposed that the current annual radiation dose limit be raised 1000-fold, which he says is still well below the hazard level of clinical data on which he bases his proposal.  Other radiation protectionists are beginning to feel unhappy about the harm their rules have caused and are joining in the cry for quick action as the Japanese head into winter.

It’s time that the draconian measures are revoked.  A simple declaration of the known health facts about radiation from the proper authorities would be a good first step. — Ted Rockwell

–       – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Kinks in the Road to Solar Power

– It’s about reducing environmental risk

This chapter discusses potential positive and negative environmental, social, and 8 economic impacts of utility-scale solar energy development. The types of solar technologies 9 evaluated include those considered to be most likely to be developed at the utility scale during the 20-year study period evaluated in this programmatic environmental impact statement (PEIS), considering technological and economic limitations. These technologies include parabolic trough, power tower, dish engine, and photovoltaic (PV) technologies.

The purpose of this chapter is to describe a broad possible range of impacts for 15 individual solar facilities, associated transmission facilities, and other off-site infrastructure that might be required to support utility-scale solar energy development. This impact analysis will inform the design of the U.S. Department of the Interior (DOI) Bureau of Land Management’s (BLM’s) Solar Energy Program and the U.S. Department of Energy’s (DOE’s) programmatic guidance, including the identification of measures to avoid, minimize, and mitigate potential impacts associated with solar energy development.

This 300 page chapter is well written, accurate, excellently referenced, and contains much information about issues that solar energy advocated prefer to bury in their search for both a silver bullet and their hatred of nuclear power. But that Doc’s mouthing off again against let me give you free lunch-ism’s and political and profit seeking corporate smoke and mirrors, solar or otherwise.

References

The Solar Draft Programmatic [DPEIS], Chapter 5 “Impacts Of Solar Energy Development and The Potential Mitigation Measures’ December 2010. Argonne National Laboratory — http://solareis.anl.gov/documents/dpeis/Solar_DPEIS_Chapter_5.pdf

Solar Programmatic Environmental Impact Statement Going In Wrong Direction

New Report Blasts Administration’s Public Lands Solar Policy — April 4, 2011

http://www.basinandrangewatch.org/solardoneright-PEIS.html

Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States (Solar Energy Development PEIS). You can link to download the entire 1100 page EIS, which is significantly shorter than those I usually read and review related to nuclear projects.            http://solareis.anl.gov/

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Trying to Change a Climate Skeptic’s Mind?  — Don’t Bother 

I’ve mentioned my convictions, yes beliefs, about changing the minds of the fervent 10% of the population — the believers of anything about an issue, whether conspiracy theory, the ‘revealed truth’ or even WIIFT driven.) This article focuses on climate change skeptics, rather the radiation phobia and measured risk or vaccine toxicity. But since we live in an open society, the rest of us can and do require and accept scientifically duplicated and peer reviewed evidence that is always grey. But don’t let that stop you from reading this well written article by Evan Girvetz.

Reference

The Energy Collective Blog, Written by Evan Girvetz
, Published on February 8th, 2011

http://theenergycollective.com/greenskeptic/51411/trying-change-climate-skeptics-mind-dont-bother

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Feed-in Tariffs Best to Deal with Climate Change Says IPCC Working Group III Renewables

Climate change is one of the great challenges of the 21st century. Its most severe impacts may still be avoided if efforts are made to transform current energy systems. Renewable energy sources have a large potential to displace emissions of greenhouse gases from the combustion of fossil fuels and thereby to mitigate climate change. If implemented properly, renewable energy sources can contribute to social and economic development, to energy access, to a secure and sustainable energy supply, and to a reduction of negative impacts of energy provision on the environment and human health.

The Intergovernmental Panel on Climate Change (IPCC) is the leading international body for the assessment of climate change. It was established by the United Nations Environment Programme (UNEP) and the World Meteorological Organization (WMO) to provide the world with a clear scientific view on the current state of knowledge on climate change and its potential environmental and socio-economic impacts.

This Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) impartially assesses the scientific literature on the potential role of renewable energy in the mitigation of climate change for policymakers, the private sector, academic researchers and civil society. It covers six renewable energy sources – bioenergy, direct solar energy, geothermal energy, hydropower, ocean energy and wind energy – as well as their integration into present and future energy systems. It considers the environmental and social consequences associated with the deployment of these technologies, and presents strategies to overcome technical as well as non-technical obstacles to their application and diffusion. The authors also compare the levelized cost of energy from renewable energy sources to recent non-renewable energy costs.

The IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) provides a comprehensive review concerning these sources and technologies, the relevant costs and benefits, and their potential role in a portfolio of mitigation options.

The Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) of the IPCC Working Group III provides an assessment and thorough analysis of renewable energy technologies and their current and potential role in the mitigation of greenhouse gas emissions. The results presented here are based on an extensive assessment of scientific literature, including specifics of individual studies, but also an aggregate across studies analyzed for broader conclusions. The report combines information on technology specific studies with results of large-scale integrated models, and provides policy-relevant (but not policy-prescriptive) information to decision makers on the characteristics and technical potentials of different resources; the historical development of the technologies; the challenges of their integration and social and environmental impacts of their use; as well as a comparison in levelized cost of energy for commercially available renewable technologies with recent non-renewable energy costs. Further, the role of renewable energy sources in pursuing GHG concentration stabilization levels discussed in this report and the presentation and analysis of the policies available to assist the development and deployment of renewable energy technologies in cli- mate change mitigation and/or other goals answer important questions detailed in the original scoping of the report.

A snippet of the findings includes:

The 135-page report by the Intergovernmental Panel on Climate Change, especially Chapter 11 on Policy, Financing and Implementation, makes it clear that the overwhelming weight of academic studies conclude that feed-in tariffs — or fixed-price mechanisms — perform better at delivering renewable energy quickly and equitably than quota systems, such as Renewable Portfolio Standards in the U.S. or the Renewable Obligation in Britain. This is not the unsurprising conclusion from a surprising source: the IPCC’s Working Group III on Renewables. Below are some selected excerpts illustrating the themes that run through the report.

Page 5 — Several studies have concluded that some feed-in tariffs have been effective and efficient at promoting RE electricity, mainly due to the combination of long-term fixed price or premium payments, network connections, and guaranteed purchase of all RE electricity generated. Quota policies can be effective and efficient if designed to reduce risk, for example, with long-term contracts.

Page 53 — Although they have not succeeded in every country that has enacted them, price-driven policies have resulted in rapid renewable electric capacity growth and strong domestic industries in several countries — most notably Germany (See Box 11.6) and Spain (See Box 11.8) but more recently in China and other countries as well — and have spread rapidly across Europe and around the world.

There’s too much detail available in the report to neatly summarizing, in a page or two of this blog topic. However, it’s easy to get to the full or even the partial reports by linking to them. Note that there appear many legal ways, via the word trade association [WTO], of punishing the goods and services exported by non-cooperating countries like the USA by taxing/tariffing their goods and services, for not taking an active role in slowing or better yet preventing global warming.

 

This is not politically attractive to the European Union’s governance, but popular opinion could never the less bring the issue to an ugly head. Look at how, in the mid-90’s, American’s reacted to the acid rain killing their forests by cross-state boundary sulfur gas releases from coal power plants.

References

Excerpts: Special Report of the Intergovernmental Panel on Climate Change

By Paul Gipe, Contributor, Renewable Word.com Blog, November 8, 2011.

http://www.renewableenergyworld.com/rea/news/article/2011/11/feed-in-tariffs-best-to-deal-with-climate-change-says-ipcc-working-group-iii-renewables?cmpid=rss&utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+renewable-energy-news-rss+%28Renewable+Energy+News%29

Full Report: http://srren.ipcc-wg3.de/report/IPCC_SRREN_Full_Report.pdf

Acid Rain  – Wikipedia 2011, http://en.wikipedia.org/wiki/Acid_Rain

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Economic and Emissions Impacts Of Electric Vehicles 

President Obama during his 2011 State of the Union address stated that we should have one million electric vehicles (EV) in the United States by 2015. The benefits of that would be to reduce our dependence on foreign oil and to reduce emissions. These are worthy goals. This article looked at the economic impact of using electric cars, their emissions, and their impact on the electric grid. The analysis was focused on the Nissan Leaf since it is an all-electric vehicle.

Operating economics — The Leaf might be used primarily as a second car for commuting on a daily round trip of say, 50 miles, requiring a daily charge of 12 kWh. A typical home currently uses 25 kWh each day, so this represents about a 50-percent increase in the electricity use. The cost of that electricity varies, depending on where you live, but if we use an average residential rate of 11.3 ¢/kWh, we get a daily cost of $1.35, or a monthly cost of about $40.

This cost needs to be compared with the cost savings of not using the required gasoline. If we assume that a typical equivalent gasoline-powered car would get 25 miles per gallon, and if we assume $3 per gallon gasoline, we get the monthly cost of $180 (50 miles/day x 30 days/month x $3 per g/25 miles/g).

For a complete examination of the economics, we would have to consider the incremental cost of the batteries. The added expense would have to be properly amortized over their effective lifetime. Both the cost and the lifetime are presently difficult to determine because the cost of batteries is not listed in the specification and because experience on the lifetime is limited. A very rough estimate might be that the batteries cost $10 000 and last for five years. This implies that the amortization cost of $166/month, neglecting any interest charge ($10,000/60 months)

Also to be considered is the cost of maintenance, which may be less expensive for an electric vehicle because of fewer moving parts. So the cost of electric vehicle ownership may be about the same as owning a gasoline-powered car.

The article continues with a discussion of Impact on the Grid (infrastructure), and Emissions Reduction-Impact.

The author concludes that the adoption of electric vehicles can have a significant impact on the reduction of unhealthy automobile emissions, but in order to decrease the emissions from the production of electricity in general, nuclear power plants are the only emission-free power generators that can have a significant impact. Currently, they produce 20 percent of the electricity in the United States, with coal’s share being 50 percent. That ratio needs to change in favor of nuclear plants by building more of them.

References

By Ulrich Decher, Ph.D., ANS Nuclear Café Blog, Posted on February 15, 2011

http://ansnuclearcafe.org/2011/02/15/economic-and-emission-impact-of-electric-vehicles/

Factors Affecting Energy Prices (Electricity Explained), US Energy Information Administration, http://www.eia.gov/energyexplained/index.cfm?page=electricity_factors_affecting_prices

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Endnotes

Copyright Notice: Product and company names and logos in this review may be registered trademarks of their respective companies.

Some of the articles listed in this column are copyright protected – their use is both acknowledge and is limited to educational related purposes, which this column provides.

Sources & Credits:  — Many of these items were found by way of the links in the newsletter NewsBridge of ‘articles of interest’ to the national labs library technical and regulatory agency users. NewsBridge is electronically published by the Pacific Northwest National Laboratories, in Richland WA.  If using NewsBridge as a starting point, I follow the provided link to the source of the information and edit its content (mostly by shortening the details) for information for our readers. I also both follow any contained links, where appropriate, in the actual article, and provide you those references as well as those gleaned from a short trip to Google-land. Obviously if my source is a magazine or blog that’s the found material I work with.

In addition, when copying materials that I cite, I do not fill the sourced ‘quoted’ words with quotation marks, the only place I keep quotes intact is where the original article ‘quotes’ another secondary source external to itself.  Remember, when Doc sticks his two bits in, its in italics and usually indented.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

In Closing

Related to Climate Change – It’s real, no matter who caused it!  I also know from the overwhelming amount of hard data, perhaps even truly believe, is this.

Disparaging data without contrary measured facts is like lying or preaching – its belief not science.

Defaming scientists and scholars with whom you disagree is like casting the first rock. I hope you and your kids have a nice safe asteroid at the Lagrangian point to live on independent of Earth; terra firma will not work.

For green or energy related items, if we put a simple price (tax) on carbon (or greenhouse gases and particles) and give out no subsidies, these new technologies would have a better chance to blossom.

With American ingenuity, Indian and Chinese too, thousands more ideas would come out of innovators’ garages. America still has the best innovation culture in the world. But we need better policies to nurture it, better infrastructure to enable it and more open doors to bring others here to try it.

Continue to remember, conditions, both technical and geopolitical continuously change – So if you’ve made up your mind about either the best way to solve a problem, or about the problem is all a conspiracy, move on to the next article in our blog. Today’s favorite is tomorrow unintended consequence. However, that’s better than sticking one’s head in the sand or believing in perpetual motion. Remember, there’s no free lunch and as a taxpayer and consumer you must always end up paying the piper!

Finally, since my topic segments are only a partial look at the original materials, click-through the provided link if you want more detail. In addition, <I hope often> to check out other background references on the topic(s).  Doc. … And yes I trust Wikipedia, but only if I’ve checkout most of an articles references for bias and accuracy!

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

QUOTES de Mois —

“The whole aim of practical politics is to keep the populace alarmed — and hence clamorous to be led to safety — by menacing it with an endless series of hobgoblins, all of them imaginary.” And, “The urge to save humanity is almost always only a false face for the urge to rule it.” — H. L. Mencken

“It is no secret that a lot of climate-change research is subject to opinion, that climate models sometimes disagree even on the signs of the future changes (e.g. drier vs. wetter future climate). The problem is, only sensational exaggeration makes the kind of story that will get politicians’ — and readers’ — attention. So, yes, climate scientists might exaggerate, but in today’s world, this is the only way to assure any political action and thus more federal financing to reduce the scientific uncertainty.” — Monika Kopacz – Atmospheric Scientist

By Ted Bade, © Copyright 2012, All Rights Reserved.

Product: SkyFi Wifi to Serial Adapter
Vendor: Southern Stars (http://www.southernstars.com/index.html)
Price: $149.95

Introduction

SkyFi is another fine product from Southern Stars, who sell SkySafari software for mobile devices and Mac computers, as well as other telescope-related hardware products. SkyFi uses WiFi to connect the RS232 control data flow from a telescope controller to an device (iPod/Phone/Pad apps as well as computer applications).

Setup

Figure 1 - SkyFi

Connecting the SkyFi to your telescope controller isn’t difficult. The package includes a couple of adaptors which will work with the mosre common telescope setups. The connection on the SkyFi itself is an RJ11 telephone jack. You can make a cable that connects the SkyFi directly to your telescope controller, use the included adaptors, or purchase a cable specifically for your computer from Southern Stars. Once connected to the telescope controller, you turn it on and it creates a wireless network.Your remote device needs to be connected to this network and also needs to be running software that can send and receive telescope control and data using the TCP IP. The connection scheme is the same as the one in the previous article. The Southern Stars web site has a nice explanation and pin out of the cables you need, in case you want to make one.

The SkyFi device itself is a bit larger then a cell phone. It is powered by 4 double-A batteries and can accept a power brick as well (6 to 12 VDC). There is no on/off switch, but there is a switch that selects either external or internal voltage source. Switching to external voltage source disconnects the internal batteries. (Which acts like a switch). A piece of velcro can be used to attach the SkyFi to the telescope mount, out of the way of motion. It is very light and once running, you won’t need to adjust it at all.

Once on, the SkyFi makes a wifi hotspot available. Firmware on the device controls the IP address and security. There is a standard IP address which is printed on the SkyFi, but you can change this and security settings if needed. I didn’t bother changing the default settings, as they worked well. I could find no fault with the defaults!

Using the Product

Before you begin using the SkyFi, you need to be sure that the telescope control software you use can communicate to the telescope using TCP IP. I Didn’t know some programs do not support TCP IP. On my MacBook, I have Voyager 4.5 and a copy of Sky Safari Beta that will work. The Starry Night Pro Plus that I like using doesn’t do TCP connections to telescopes. The people at Starry Night were unaware of a solution that would work on the Macintosh. For Windows users there are a couple of shareware applications that create a virtual com port that can be tied to the TCP connection, so I imagine this would work with a Window based machine and Starry Night or any other non-TCP controller application.

Figure 2 - SkyFi with a Telescope

If you are controlling with your i-device, you will need the Southern Stars Sky Safari package. (I am unaware of any other astronomy app that controls a telescope). We looked at these Apps a bit in the last article. In the App’s settings, you choose to use TCP IP to connect to the telescope controller. The default address is the same as the default on the SkyFi. (No surprise there!) Select to control the telescope and you are in control using your iPod/iPad/iPhone.

Working with the Voyager software, I had no issues controlling my telescope computer at all. Commands were instant as was feed back. The only issue I had was with me forgetting to choose the SkiFi network rather then my own home wireless network. You also need to make sure the controller software has the same TCP address that the SkyFi has. In Voyager 4.5, there is a box to enter this address. The default address is printed on the SkyFi device, which is another good reason for keeping to the defaults. However, if you need to change it, you can always re-label the back of the unit.

When I first read about the SkyFi, I thought that it was a wireless device and that it would log onto the local wireless network and make the telescope available on that network. It doesn’t do that. Rather then logging onto an existing network, it creates one of it’s own. So I couldn’t use this device to control my telescope with my desktop computer, since it doesn’t have a WiFi card. Nor would one be able to use it to allow access to the telescope from a remote site. You need to be in range of the SkyFi’s wireless netwrok to connect.

Figure 3 - VSP3 Screen

Since the computer you are controlling the telescope with is connected to the SkyFi network, it won’t be connected to your regular one. While observing I usually listen to Internet radio and I will often pop onto some internet site to inspect images and information about the object I am seeking. So I don’t get to listen to the Internet Radio, but I can still do my research by logging back onto my home network, do the research, then re-connect to the SkyFi. Luckily, this isn’t a big issue. Once the telescope is aimed at an object, the onboard controller takes care of compensating for the movement of the earth. Once connected back to the SkyFi, the data stream identifies the slightly changed location and all is well. It is just an added step in the process.

Conclusion

The biggest issue I had with the SkyFi is that it doesn’t come as a package. You buy the SkyFi and then need to find some compatible software. If the software you already purchased isn’t compatible, then you need to consider this as part of the purchase cost. It would be a whole lot nicer if the SkyFi came packaged with either SkySafari or Voyager. However, if you are into astronomy, you probably already have some package that will work with the SkyFi.

Much to my chagrin, I had expected that using the SkyFi would remedy the tangle of cables that I “need” to deal with when observing. However, I found that I still need to bring an extension cord to power the AutoStar (or use the battery adaptor). Since I had the power cord there, I went ahead and plugged in my MacBook Pro, so I still had the extension cord cable and the power supply cord to the MacBook. Thus, the tripping issue wasn’t really resolved. I suppose I could run the Scope on battery and bring the extension cable to the MacBook Pro, but that would cost me a lot in the battery budget.

As far as distance, the SkyFi does pretty well. I walked around the yard with my MacBook and had to get pretty far away to loose the connection. I think I was able to move slightly father then the expected 100 feet from the device. I was also able to put the MacBook on my dining room table and still control the telescope in the yard. I can see this as a real advantage in the winter as it would give me a chance to warm up between observations.

SkyFi is available through the Southern Star’s web site as well as many other astronomy stores. Southern Star also sells Sky Safari for MacOS X in three flavors, the Plus and Pro versions includes telescope controls ($20 and $50 respectively). The version for the iPod/Phone/Pad can be purchased through iTunes store again, you will need either the Plus or Pro version to control the telescope. In the next installment of this series, I will look specifically at the Sky Safari applications for the Macintosh.

Recommendation

Overall, the SkyFi works very well. If you are looking for a wireless connection to your telescope, this is the device you want. I don’t think there are many other options. I had no issues controlling my telescope using the device. If you have an iDevice and want to control your telescope, this is again a terrific solution.

By Mike Hubbartt, © Copyright 2011, All Rights Reserved.

I just started my second year of graduate school at the University of St. Thomas (UST) in St. Paul, MN, and I am working on a MS in Software Engineering degree. In my first year of classes, I enrolled in 2 classes per semester which is a heavy load when working full time. I felt I progressed so much after one year, that I would continue with the same workload, even though it left me with little time for things beyond work and school.

I enrolled in two classes for the Fall: Object Oriented Analysis and Design (OOA/D) and Data Warehousing (DW). Before classes started I re-read The Object Oriented Thought Process and Code Complete to prep for the OOA/D class. I also ordered both required textbooks from Amazon.com at a substantially reduced price compared to the new text prices in the bookstore. For the DW class, I didn’t know what other books would help, so I ordered all three text books listed in the course syllabus. The DW books, also from Amazon.com, were also at a reduced price compared to new books at the bookstore.

I had classes on Tuesday and Wednesday evenings, so I dedicated the other 5 days to studying and project work. The Fall really flew by this year. So much to learn, so many interesting and new concepts, and a few new tools to learn too.

Tools

For OOA/D, we had to use MagicDraw to create UML drawings and I found it to be a fairly intuitive tool to use yet still quite powerful. Our OOA/D professor arranged for MagicDraw licenses, so I obtained one, downloaded and installed the software, and ran through a few tutorials that were quite helpful. Having an MSDN account for students to download Microsoft tools is a real blessing, and UST does provide accounts to those that need tools for their classes. My DW class required the MS SQL Server 2008 Management tools, so I used my UST MSDN account to download the software and installed it on a laptop running Windows 7.

Projects

Our OOA/D class had two person team projects, and our DW class had three person team projects. For OOA/D, each team decided what it wanted to do and then proposed it for approval to the professor. We did a website with Struts and Hibernate frameworks – very cool. For DW, the professor gave a five stage project, where he provided clean, valid data at the start of steps 2 – 4, so any mistakes made early in the project did not affect our ability to learn the material and do well on the assignment. This was the first time I’ve had known clean data in a multistage class assignment and I really liked it. At the start of stages 3 and 4, we were able to look back at to what we did and see how we did right and wrong in the earlier stage. This is one approach I really liked and I hope I see more assignments like it in the future.

Some tools that were useful in both projects we communications tools. Twitter and email absolutely rock, but they alone are not enough. In my OOA/D project, we used a free SVN repository hosted by ProjectLocker for keeping our source code in sync. For the DW project, we used Dropbox to do version control.

Tests and Homework

In both classes classes we had a mid-term and a final exam, and the exams were as challenging as last year. Both classes had multiple homework assignments. Not as much homework as I had in the Advanced Web Development course last Spring, but still more than enough, especially compared to undergrad course homework assignments.

Team Building

I worked with three different people on projects in both classes, and decided to be the driver of both projects. Both teams met at my house on different days to work on our projects, and one thing I did for team building was to fix lunch for the team. We all had different backgrounds and experiences, so a meal is a great way to relax and get to know other people. I like to cook (check out my food blog: mikeh2010.wordpress.com) and I like to try new recipes, so my team mates gamely tried the food. I didn’t duplicate the meals one time, and it seemed to work out well for both of us except perhaps one time. Once I served something very spicy (Korean BBQ) and it might have been too spicy for one of my team mates. He said it wasn’t, but he is a real trooper and may have just been polite. In any case, I appreciated the chance to cook and just talk with all three team mates and hope to partner with them again in other classes.

Conclusion

I enjoyed this semester. I learned a lot and enjoyed spending some time working on projects with my three classmates. I plan to generate another article or two on the topics we covered in both classes, as well as improve some of my existing articles. I know I still have another eight classes to complete my degree, but the education is worth the time and effort. Some people have no choice but attend online schools and that is fine – do what you can to improve yourself however you can. If you can attend class in person, it is well worth it. I missed a total of 1 class this semester, even though I had some health issues early in the semester, because I truly enjoyed being on campus.

I’m still excited to be in grad school, and I still believe it to be a good career choice for many professions besides software development. I’m taking a week off, then it is time to start reading again over the holiday break. I will take two classes in the Spring and look forward to what I learn in both courses I’ll take this Spring. Until then, keep on learning.

— Three National Academies Recent Studies

An Op-Ed Piece; doc’s eclectic views November 1, 2011

By Harry Babad, © Copyright 2011, All Rights Reserved  — Used under the Creative Commons Attribution-ShareAlike License


Introduction

As is my want, I periodically check the National Academies Press web pages for workshop notes/articles/reports that appeal to me, not as nuclear waste and energy expert. Rather I explore the various issues at times only ripples and at times tidal waves related to public policy in both American society and that of the world.

Hence this Op-Ed piece. Herein I COPY the prefaces or abstracts from three reports I found both distress and challenging. Unusual for me, I do not editorialize on them, that’s up to you, the reader. I do however highlight sections that made a deep impression on me by either underlining the (if short) or by enclosing them in a text box. I also could not resist my genetic editors syndrome so I split a few sentences in two, or added in italics, a linking word or two. Remember, my stuff is in italics.

Also the graphics are my idea, the NRC reports a captained extensive tables and figures, good technical stuff, but are not into Flesch–Kincaid readability test  levels for their narratives or illustrations. But my friends in the academies will not disinherit me because its all for an educational purpose. _        Doc.

…Read on!

A Renewable Biofuel Standard — America’s Quandary

Scientific Legal Evidence Revisited – Reference Manual on Scientific Evidence: Third Edition

Essential Health Benefits — Balancing Coverage & Costs

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Setting a Biofuels Renewable Fuel Standard

— Choosing an alternative, an all American Quandary [A NRC Study of the Potential Economic and Environmental Effects of U.S. Biofuel Policy]

“In the United States, we have come to depend upon plentiful and inexpensive energy to support our economy and lifestyles. In recent years, many questions have been raised regarding the sustainability of our current pattern of high consumption of nonrenewable energy and its environmental consequences. Further, because the United States imports about 55 percent of the nation’s consumption of crude oil, there are additional concerns about the security of supply. Hence, efforts are being made to find alternatives to our current pathway, including greater energy efficiency and use of energy sources that could lower greenhouse gas (GHG) emissions such as nuclear and renewable sources, including solar, and (also their) environmental consequences of increasing biofuels production. The statement of task asked this committee to provide “a qualitative and quantitative description of biofuels currently produced and projected to be produced by 2022 in the United States under different policy scenarios …

“The United States has a long history with biofuels. Recent interest began in the late 1970s with the passage of the National Energy Conservation Policy Act of 1978, which established the first biofuels subsidy, applied in one form or another to (mostly) corn-grain ethanol since then. The corn grain ethanol industry grew slowly from early 1980s to around 2003. From 2003 to 2007,ethanol production grew rapidly as methyl tertiary butyl ether was phased out as a gasoline oxygenate and replaced by ethanol. Interest in providing other incentives for biofuels increased also because of rising oil prices from 2004 and beyond. The Energy Independence and Security Act of 2007 established a new and much larger Renewable Fuels Standard and set in motion the drive towards 35 billion gallons of ethanol-equivalent biofuels plus 1 billion gallons of biodiesel by 2022. This National Research Council committee was asked to evaluate the consequences of such a policy; the nation is on a course charted to achieve a substantial increase in biofuels, and there are challenging and important questions about the economic and environmental consequences of continuing on this path.

The National Research Council committee brought together expertise on the many dimensions of the topic. In addition, we called upon numerous experts to provide their perspectives, research conclusions, and insight. Yet, with all the expertise available to us, our clearest conclusion is that there is very high uncertainty in the impacts we were trying to estimate. The uncertainties include essentially all of the drivers of biofuel production and consumption and the complex interactions among those drivers: future crude oil prices, feedstock costs and availability, technological advances in conversion efficiencies, land-use change, government policy, and more.

“The U.S. Department of Energy projects crude oil price in 2022 to range between $52 and $177 per barrel (in 2009 dollars), a huge range. There are no commercial cellulosic biofuels plants in the United States today. Consequently, we do not know much about growing, harvesting, and storing such feedstocks at scale. We do not know other than for ethanol how well the conversion technologies will work nor what they will cost. We do not have generally agreed upon estimates of the environmental or Green House Gases [GHG] impacts of most biofuels. We do not know how landowners will alter their production strategies. The bottom line is that it simply was not possible to come up with clear quantitative answers to many of the questions. What we tried to do instead is to delineate the sources of the uncertainty, describe what factors are important in understanding the nature of the uncertainty, and provide ranges or conditions under which impacts might play out.

“Under these conditions, scientists often use models to help understand what future conditions might be like. In this study, we examined many of the issues using the best models available. Our results by definition carry the assumptions and inherent uncertainties in these models, but we believe they represent the best science and scientific judgment available.

“We also examined the potential impacts of various policy alternatives as requested in the statement of work. Biofuels are at the intersection of energy, agricultural, and environmental policies, and policies in each of these areas can be complex. The magnitude of biofuel policy impacts depends on the economic conditions in which the policy plays out, and that economic environment (such as GDP growth and oil price) is highly uncertain. Of necessity, we made the best assumptions we could and evaluated impacts contingent upon those assumptions. Biofuels are complicated.

“Biofuels are controversial. There are very strong advocates for and political supporters of biofuels. There are equally strong sentiments against biofuels. Our deliberations as a committee focused on the scientific aspects of biofuel production—social, natural, and technological. Our hope is that the scientific evaluation sheds some light on the heat of the debate, as we have delineated the issues and consequences as we see them, together with all the inherent uncertainty.”

Why No Conclusions or Recommendations? — “The statement of task calls on the committee to refrain from recommending policies but to provide an objective review of the policy instruments available, including an assessment of the strengths and weaknesses of each in affecting long-term trends in transportation energy use and emissions. Because of the multitude of ways in which individual policy instruments can be designed, targeted, and applied, it was not possible to examine all of their possible variations and outcomes for a sector as large and diverse as U.S. transportation. For example, how fast and by how much fuel taxes or vehicle efficiency standards are raised will profoundly influence the relative prospects of such options for implementation and their effects on energy use and emissions and on other areas of interest to policy makers such as transportation safety, the environment, and the economy. This study is not a modeling exercise aimed at projecting and quantifying the effects of many policy instruments, each designed and structured in alternative ways and applied across one or more modes. The more realistic study goal is to compare the main types of policy options with respect to the main energy- and emissions-saving responses they induce and the challenges and opportunities they present for implementation.”

There is much in this report to stretch you mental muscles. Too, often what we read is distorted by either the silver bullet or golden goose syndrome or by WIIFT. As is usual with NAS reports, there are occasional places where I differ from the conclusions of this consensus report; but consensus is just that — not perfect, just hopefully workable. Indeed where panel members are friends or colleagues, I’ve often argued particular points with them. However, over-all the reports are a very good source of information.

National Academy of Science-National Academies Press <2011> The PDF download is free!  PREPUBLICATION COPY – document is subject to editorial changes only.

Biofuel – Wikipedia, 2011 — http://en.wikipedia.org/wiki/Biofuels

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Scientific Legal Evidence Revisited – Reference Manual on Scientific Evidence: Third Edition

On many occasions I have gripped about courts treatment of scientific evidence and at times written in praise of revising the tort system with the wider scale implementation science courts using well-trained certified peer accredited combinations legal experts and scientists, to assist the judge. Cases would not go to juries until the underlying scientific evidence had been evaluated. Why — just on example,  chrysotile based asbestos fibers are relatively low in toxicity so should not be painted with the same brush as Amphibole asbestos.

 This NAP document sings the songs I love to hear; belief and science have their own place.

Only then could a case enter the fault finding juried phase. I would much rather give jury applicants tests in scientific methodology and broad knowledge, but I suspect very few potential jurors would pass such a test. Yes, I hear the screams from lawyers deprived of their cut, civil libertarians and educators.

The NRC Report Summary

“Supreme Court decisions during the last decade of the twentieth century mandated that federal courts examine the scientific basis of expert testimony to ensure that it meets the same rigorous standard employed by scientific researchers and practitioners outside the courtroom. Needless to say, this requirement places a demand on judges not only to comprehend the complexities of modern science but also to adjudicate between parties’ differing interpretations of scientific evidence.

“Science, meanwhile, advances. Methods change, new fields are born, new tests are introduced, the lexicon expands, and fresh approaches to the interpretation of causal relations evolve. Familiar terms such as enzymes and molecules are replaced by microarray expression and nanotubes; single-author research studies have now become multi-institutional, multi-author, international collaborative efforts. No field illustrates the evolution of science better than forensics.

“The evidence provided by DNA technology was so far superior to other widely accepted methods and called into question so many earlier convictions that the scientific community had to reexamine many of its time-worn forensic science practices. Although flaws of some types of forensic science evidence, such as bite and footprint analysis, lineup identification, and bullet matching were recognized, even the most revered form of forensic science—fingerprint identification—was found to be fallible. Notably, even the “gold standard” of forensic evidence, namely DNA analysis, can lead to an erroneous conviction if the sample is contaminated, if specimens are improperly identified, or if appropriate laboratory protocols and practices are not followed.

“Yet despite its advances, science has remained fundamentally the same. In its ideal expression, it examines the nature of nature in a rigorous, disciplined manner in, whenever possible, (in) controlled environments. It still is based on principles of hypothesis generation, scrupulous study design, meticulous data collection, and objective interpretation of experimental results. As in other human endeavors, however, this ideal is not always met. “Feverish competition between researchers and their parent institutions, fervent publicity seeking, and the potential for dazzling financial rewards can impair scientific objectivity. In recent years we have experienced serious problems that range from the introduction of subtle bias in the design and interpretation of experiments to overt fraudulent studies. In this welter of modern science, ambitious scientists, self-designated experts, billion dollar corporate entities, and aggressive claimants, judges must weigh evidence, judge, and decide.

“As with previous editions of the Reference Manual, this edition is organized according to many of the important scientific and technological disciplines likely to be encountered by federal (or state) judges. We wish to highlight here two critical issues germane to the interpretation of all scientific evidence, namely issues of causation and conflict of interest. Causation is the task of attributing cause and effect, a normal everyday cognitive function that ordinarily takes little or no effort. Fundamentally, the task is an inferential process of weighing evidence and using judgment to conclude whether or not an effect is the result of some stimulus. Judgment is required even when using sophisticated statistical methods.

“Such methods can provide powerful evidence of associations between variables, but they cannot prove that a causal relationship exists. Theories of causation (evolution, for example) lose their designation as theories only if the scientific community has rejected alternative theories and accepted the causal relationship as fact. Elements that are often considered in helping to establish a causal relationship include predisposing factors, proximity of a stimulus to its putative outcome, the strength of the stimulus, and the strength of the events in a causal chain.

“Unfortunately, judges may be in a less favorable position than scientists to make causal assessments. Scientists may delay their decision while they or others gather more data. Judges, on the other hand, must rule on causation based on existing information. Concepts of causation familiar to scientists (no matter what stripe) may not resonate with judges who are asked to rule on general causation (i.e., is a particular stimulus known to produce a particular reaction) or specific causation (i.e., did a particular stimulus cause a particular consequence in a specific instance). In the final analysis, a judge does not have the option of suspending judgment until more information is available, but must decide after considering the best available science. Finally, given the enormous amount of evidence to be interpreted, expert scientists from different (or even the same) disciplines may not agree on which data are the most relevant, which are the most reliable, and what conclusions about causation are appropriate to be derived.

“Like causation, conflict of interest is an issue that cuts across most, if not all, scientific disciplines and could have been included in each chapter of the Reference Manual. Conflict of interest manifests as bias, and given the high stakes and adversarial nature of many courtroom proceedings, bias can have a major influence on evidence, testimony, and decision making. Conflicts of interest take many forms and can be based on religious, social, political, or other personal convictions. The biases that these convictions can induce may range from serious to extreme, but these intrinsic influences and the biases they can induce are difficult to identify. Even individuals with such prejudices may not appreciate that they have them, nor may they realize that their interpretations of scientific issues may be biased by them.

“Because of these limitations, we consider here only financial conflicts of interest; such conflicts are discoverable. Nonetheless, even though financial conflicts can be identified, having such a conflict, even one involving huge sums of money, does not necessarily mean that a given individual will be biased. Having a financial relationship with a commercial entity produces a conflict of interest, but it does not inevitably evoke bias. In science, financial conflict of interest is often accompanied by disclosure of the relationship, leaving to the public the decision whether the interpretation might be tainted. Needless to say, such an assessment may be difficult. The problem is compounded in scientific publications by obscure ways in which the conflicts are reported and by a lack of disclosure of dollar amounts.

“Judges and juries, however, must consider financial conflicts of interest when assessing scientific testimony. The threshold for pursuing the possibility of bias must be low. In some instances, judges have been frustrated in identifying expert witnesses who are free of conflict of interest because entire fields of science seem to be co-opted by payments from industry. Judges must also be aware that the research methods of studies funded specifically for purposes of litigation could favor one of the parties. Though awareness of such financial conflicts in itself is not necessarily predictive of bias, such information should be sought and evaluated as part of the deliberations.

“The Reference Manual on Scientific Evidence, here in its third edition, is formulated to provide the tools for judges to manage cases involving complex scientific and technical evidence. It describes basic principles of major scientific fields from which legal evidence is typically derived and provides examples of cases in which such evidence was used. Authors of the chapters were asked to provide an overview of principles and methods of the science and provide relevant citations.

“We expect that few judges will read the entire manual; most will use the volume in response to a need when a particular case arises involving a technical or scientific issue. To help in this endeavor, the Reference Manual contains completely updated chapters as well as new ones on neuroscience, exposure science, mental health, and forensic science. This edition of the manual has also gone through the thorough review process of the National Academy of Sciences.

“As in previous editions, we continue to caution judges regarding the proper use of the reference guides. They are not intended to instruct judges concerning what evidence should be admissible or to establish minimum standards for acceptable scientific testimony. Rather, the guides can assist judges in identifying the issues most commonly in dispute in these selected areas and in reaching an informed and reasoned assessment concerning the basis of expert evidence. They are designed to facilitate the process of identifying and narrowing issues concerning scientific evidence by outlining for judges the pivotal issues in the areas of science that are often subject to dispute.

“Citations in the reference guides identify cases in which specific issues were raised; they are examples of other instances in which judges were faced with similar problems. By identifying scientific areas commonly in dispute, the guides should improve the quality of the dialogue between the judges and the parties concerning the basis of expert evidence. In our committee discussions, we benefited from the judgment and wisdom of the many distinguished members of our committee, who gave time without compensation.”

http://www.nap.edu/catalog.php?record_id=13163

The PDF download is free!  PREPUBLICATION COPY – document is subject to editorial changes only.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Essential Health Benefits — Balancing Coverage & Costs <2011>

The academy committee, all volunteers, albeit knowledgeable, managed to stay clear of politicizing, an accomplishment I’m not sure I could equal.

“A critical element of the Patient Protection and Affordable Care Act (ACA) is the set of health benefits—termed “essential health benefits” (EHB)—that must be offered to individuals and small groups in state-based purchasing exchanges and the existing market. If the package of benefits is too narrow, health insurance might be meaningless; if it is too broad, insurance might become too expensive. The Institute of Medicine (IOM) Committee on Defining and Revising an Essential Health Benefits Package for Qualified Health Plans concluded that the major task of the Secretary of Health and Human Services (HHS) in defining the EHB will be balancing the comprehensiveness of benefits with their cost.

“Not surprisingly, the work of this committee drew intense public interest. Opportunity for public input was offered through testimony at two open hearings and through the web. The presentations at the hearings reinforced for the committee the difficulty of the task of balancing comprehensiveness and affordability. On the one hand, groups representing providers and consumers urged the broadest possible coverage of services. On the other, groups representing both small and large businesses argued for affordability and flexibility. The committee thus viewed its principal task as helping the Secretary navigate these competing goals and preferences in a fair and implementable way.

“The ACA sets forth only broad guidance in defining essential health benefits, and that guidance is ambiguous—some would say contradictory.

First, EHB “shall include at least” ten named categories of health services per Section 1302 Second, the scope of the EHB shall be “equal to the scope of benefits provided under a typical employer plan.”
Third, there are a set of “required elements for consideration” in establishing the EHB, such as balance and nondiscrimination.
Fourth, there are several specific requirements regarding cost sharing, preventive services, proscriptions on limitations on coverage, and the like.

Taken together, these provisions complicate the task of designing an EHB package that will be affordable for its principal intended purchasers—individuals and small businesses.

“The committee’s solution is this: build on what currently exists, learn over time, and make it better. That is, the initial EHB package should be a modification of what small employers are currently offering. All stakeholders should then learn enough over time—during implementation and through experimentation and research—to improve the package. The EHB package should be continuously improved and increasingly specific, with the goal that it is based on evidence of what improves health and that it promotes the appropriate use of limited resources. The committee’s recommended modifications to the current small employer benefit package are:

(1) To take into account the ten general categories of the ACA;
(2) to apply committee-developed criteria to guide aggregate and specific EHB content and on the methods to determine the EHB; and
(3) to develop an initial package within a premium target.

“Defining a premium target, which is a way to address the affordability issue, became a central tenet of the committee. Why the Secretary should take cost into account, both in defining the initial EHB package and in updating it, is straightforward: if cost is not taken into account, the EHB package becomes increasingly expensive, and individuals and small businesses will find it increasingly unaffordable. If this occurs, the principal reason for the ACA—enabling people to purchase health insurance, and covering more of the population—will not be met. At an even more fundamental level, health benefits are a resource and no resource is unlimited. Defining a premium target in conjunction with developing the EHB package simply acknowledges this fundamental reality. How to take cost into account became a major task.

“The committee’s solution in the determination of the initial EHB package is to tie the package to what small employers would have paid, on average, for their current packages of benefits in 2014, the first year the ACA will apply to insurance purchases in and out of the exchanges. This “premium target” should be updated annually, based on medical inflation. Since, however, this does little to stem health care cost increases, and since the committee did not believe the DHHS Secretary had the authority to mandate premium (or other cost) targets, the committee recommends a concerted and expeditious attempt by all stakeholders to address the problem of health care cost inflation.

“An additional task related to that part of the committee’s charge directing it to address “medical necessity.” Medical necessity is a means by which insurers and health plans determine whether it is appropriate to reimburse a specific patient for an eligible benefit. For example, the insurance contract may specify that diabetes care is a covered benefit; whether it is paid for depends on whether that care is medically necessary for the particular patient—whether, for example, the patient has diabetes.

‘The committee believes that medical necessity determinations are both appropriate and necessary and serve as a context within which the EHB package is developed by a health insurer into a specific benefit design and that benefit design is subsequently administered. The committee favored transparency both in the establishment of the rules used in making those determinations and in their application and appeals processes. Indeed, since the design and administration of health benefits rather than the scope of benefits themselves are what appear to differentiate small employer plans from each other and from large employer plans, monitoring benefit administration is an important step in the learning process and updating of the EHB.

“Further, the committee stated that a goal of the updated EHB package is that its content becomes more evidence-based. The committee wishes to emphasize the importance of research about the effectiveness of health services and to emphasize that the results of this research, including costs, should be taken into account in designing the EHB package. New and alternative treatments, in the view of the committee, should meet the standard of providing increased health gains at the same or lower cost.

“Since the committee saw balancing comprehensiveness and affordability as the Secretary’s major task, it also recognized that any such balancing affected, and was affected by, individual and societal values and preferences. Thus, the committee recommends that both in the determination of the initial EHB package and in its updates, structured public deliberative processes be established to identify the values and priorities of those citizens eligible to purchase insurance through the exchanges, as well as members of the general public. Such processes will enhance both public understanding of the tradeoffs inherent in establishing an EHB package and public acceptance of what emerges.

“The committee recommended that the Secretary develop a process that facilitates discovery and implementation of innovative practices over time. A key source for this information will come from what states are observing or enabling them in their own exchanges. Moreover, the committee recommends that for states that operate insurance exchanges, requests to adopt alternatives to the federal essential health benefits package be granted only if these are consistent with ACA requirements and the criteria specified in the report and they are not significantly more or less generous than the federal package. State packages also should be supported by meaningful public input. The committee hopes that its work will be useful in assisting the Secretary of HHS to determine and update the essential health benefits and that its deliberations will be informative to the public. As with most issues of importance, the committee’s work involved balancing tradeoffs among competing interests and ideas. We hope this work is a positive step toward effective implementation of a key provision of the ACA.”

Since, in America the Litigative, the recommendations and implementation practices recommended by the EHB will be challenged in court, I recommend you read, if you skipped it, the previous topic on ‘Scientific Legal Evidence”.

A Reference and a Note

Essential Health Benefits — Balancing Coverage & Costs, 2011

http://www.nap.edu/catalog.php?record_id=13234

The PDF download is free!  PREPUBLICATION COPY – document is subject to editorial changes only.

A Note ASIDE:

Recent articles and studies on Implicit Prejudice, holding belief based and deeply buried prejudices, which daily affect your decisions. See: https://implicit.harvard.edu/implicit/ and Scientific American: The Implicit Prejudice 06/09/2006 Article [http://www.sciam.com/print_version.cfm?articleID=0004B0F0-7813-146C-ADB783414B7F0000] The implications of these hidden workings of our brains add much to how we make de3cision and ‘judge’ truth individually or in court.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

General References

The National Academies Press

Recent NAP Releases  [http://www.nap.edu/new.html]

NAP—Environment and Environmental Studies [http://www.nap.edu/topics.php?topic=285&t=p]

NAP—Energy and Energy Conservation | Policy, Reviews and Evaluations   [http://www.nap.edu/topics.php?topic=358]

Other recent NAS/NAE/NAP topics I skimmed and found interesting and at times quite troubling.

  • Chemistry in Primetime and Online — Communicating Chemistry in Informal Environments <2011>
  • Environmental Impacts Of Wind-Energy Projects <2011>
  • Informing the Future — Critical Issues in Health, Sixth Edition <2011>
  • Relieving Pain in America — A Blueprint for Transforming Prevention Care Education & Research <2011>
  • On Being a Scientist — A Guide to Responsible Conduct in Research, Third Edition <2009>

Wikipedia for Background MaterialsYes I trust Wikipedia, but only if I’ve checkout most of an articles references for bias and accuracy! My Wikipedia checks are no different that my checking websites for whom their publishers represent and what causes they favor.

U.S. Government Accountability Office [GAO]   [http://www.gao.gov/]
Recent Reports and Studies. The GAO is the non-partisan 90-year old investigative arm of congress. In a similar manner, to my learning from NRC/NAP reports, many of the technology reports published by the Government Accountability Office make facilitating, if troublesome reading. NAS committee’s to which I have provided expert knowledge specifically in the nuclear waste area are thorough, relatively unbiased and always accurate in using reference materials.

Congressional Research Service [CRS]

The CRS is known as “Congress’s think tank” is the public policy research arm of the United States Congress. As a legislative branch agency within the Library of Congress, CRS works exclusively and directly for Members of Congress, their Committees and staff on a confidential, nonpartisan basis. CRS reports are highly regarded as in-depth, accurate, objective, and timely, but as a matter of policy they are not made directly available to members of the public. There have been several attempts to pass legislation requiring all reports to be made available online, most recently in 2003, but none have passed. Instead, the public must request individual reports from their Senators and Representatives in Congress, purchase them from private vendors, or search for them in various web archives of previously released documents.

The CRS is joined by two other congressional support agencies. The Congressional Budget Office provides Congress with budget-related information, reports on fiscal, budgetary, and programmatic issues, and analyses of budget policy options, costs, and effects. The Government Accountability Office assists Congress in reviewing and monitoring the activities of government by conducting independent audits, investigations, and evaluations of federal programs. [Partial Wikipedia Quote]

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

End Notes:

Copyright Notice — Product and company names and logos in this review may be registered trademarks of their respective companies.

Disclosure — Some of the articles quoted and listed in this column are copyright protected – their use is both acknowledge and is limited to educationally related purposes, which this column provides. They are likely covered by the Creative Commons Attribution-ShareAlike License.

By Mike Hubbartt, © Copyright 2011, All Rights Reserved.

Software: Tides Calculator
Vendor: Wolfram Research (www.wolfram.com)
Price: $.99

Wolfram’s Mathematica (now version 8.0.4) is a mature product used by many professionals and academics, and the past couple of years Wolfram has started getting developing mobile applications. I’ve already reviewed their Astronomy and Chemistry course assistant apps, which are excellent and inexpensive products for students. This review is on Wolfram’s Tides Calculator, one of their new Reference apps for the iPhone/Touch and iPad.

The tides are relevant to many people around the world that live on or near the coast, or that make a living on the sea. Wolfram provides a low cost ($.99) app that is easy to transport and provides good information about the tides, including Current Tide, High Tide, Low Tide, Average Tide, Tide Forecast/History, and Extras.

Getting Started

I downloaded the Tides app from the iTunes store and it was a typically easy install onto my iPod Touch. I selected the first option (Current Tide), and and the default location was set to Current Location (handy of you are on the go and want the tide info for your current site. As tides are not as much of an issue for us in Minneapolis, MN, I entered Maine for the Location and pressed the Compute button. In a couple of seconds, the app displayed a chart for the tides covering 24 hours, with the time and height of high and low tides for Maine. As I entered the search in the afternoon, the returned results covered the current and next days which is better than forcing one to go to a different path to get the tide info for the next day. One thing to note: this data was computed based on historical data and did not include weather-influenced factors like hurricanes, so take this into consideration if you need current information and bad weather impacts your location.

There is other useful data on the same screen. The tide reporting station for Maine is at Bangor, at the Penobscot River, and the coordinates of the station are included (good for using with Google Earth), along with the relative position of the station in relation to the state of Maine. Another bit of useful information on the screen is sunrise, sunset, moonrise, and moonset. Not all of the screen information is visible at the same time, but it is easy to move around or zoom out as needed.

Next I checked out the High Tide and Low Tide information. I again used Bangor Maine as the location and essentially saw the same information displayed as I saw at the Current Tide screen, although the graphs highlighted the high and low tides respectably. I used Bangor again for the Average Tide option, and there were a few extra bits of information (range of tide, average high tide, average of high and low tides, and average low tide), but had mostly the same information as was shown at the Current Tide screen.

The next option I tested was Tide Forecast/History. Using my favorite (Bangor, Maine) location, I retrieved the tides forecast for 11/24/2011 (Thanksgiving Day in the US) and saw a nice 24 hr graph of the expected tides, with times/heights of high/low tides along with sun/moon rise/set times. Good data for a forecast. Next I left the location alone and changed the date to 11/24/2010 and the app downloaded the historical tide data for last year – also, good data.

Finally I checked out the Extras options and they were: Sunrise and Sunset, Sun Exposure, UV Forecast, Weather and Forecast, Moon Phase, and Properties of Oceans. For Sunrise and Sunset, I retrieved the information for my current location (Minneapolis, MN) for tomorrow and saw the data, plus the duration of daylight (good to know as we edge closer to the shortest day of the year), the altitude and azimuth for my location, a nice graph of the sun path for tomorrow, some cool (to amateur astronomers) star properties, an image of the current Earth/Moon/Sun configuration (science teachers, paying attention?), and the 10 closest stars (including Wolf 359, mentioned once or twice in Star Trek: The Next Generation). Excellent information for educators and astronomers.

Another Extras option is Sun Exposure, where you can enter your location, date, and skin type to compute the most appropriate sun tan lotion needed to protect your body. Nice. With my skin type, I will need an SPF 15 if I head outdoors tomorrow. I like the UV Forecast option too – it gave the current UV conditions, along with a map of most of the country that showed this data, along with the expected time to get a sunburn (based on skin type and exposure), and the recommended SPF factor for sun tan lotion.

The next Extras item I checked out was the weather forecast. I regularly check weather when I fly, and I’m just as interested in the weather when driving in Minnesota in January and February, so this is one of my favorite extras.The forecast for the current day and next day is useful, and the graph for the temperatures for the upcoming week is also good to know (especially as the highs and lows for each day is also included). I also find the precipitation rate and wind speed forecast graphs to be very useful and both enhance this aspect of the app. I should add you can get weather forecasts for other locations than current location, so this could be a nice assistant when planning a vacation.

The next option in Extras is Moon Phase, which provides good info if you’re wanting to look at the Moon. The last Extras option is Properties of Oceans and it provides Ocean Information, Ocean Properties, Speed of Sound in the Ocean, and Pressure Under Water data. Good information for planning a dive, don’t you think?

Likes

  • The price is excellent, and the UI is simple yet functional.
  • This is a good tool to use to help plan a vacation.
  • The app does what good apps do – it retrieves information over the internet (from Wolfram servers), reducing the footprint of the downloaded/installed app.
  • I like how the locations default to the current location (great for lazy mobile device owners like myself).
  • The amount of information in Extras is excellent and really expands the app. Weather is my absolute favorite option in this app.

Dislikes

  • Didn’t like seeing the same information in Current Tides duplicated in the High, Low, and Average Tide screens. I’d rather have buttons at the Current Tide screen that would provide the additional information. I think it might have been better to release a Weather App, which includes Tide information, that a Tides App with weather information.

Conclusion

The information is useful to a lot of people, not just sailors. As a fiction writer, I may need to know past or future tides that affect the characters in some of my stories, and this inexpensive app would be an excellent resource. While I know many people (including me) prefer free apps, it is hard to argue with the low price for this app.

Recommendation

Buy it. Skip the burger on the McDonald’s value menu and buy this app. It is interesting information, and good, inexpensive apps need to be purchased to encourage vendors to continue to provide quality apps at a low price. Wolfram currently has another 8 Reference Apps available, and the next one I’ll review is their Fractals App.

Please let our readers know if you’ve tried this app and your impression of the software. Sharing experiences on expensive apps is important, but so is telling others about good, low cost applications.

Be well.

By Harry {doc} Babad, © Copyright 2011, All Rights Reserved.  Revision 2 (corrected 1/2/2012)

Introduction

Over the years there has been On-N-Off again interest in using thorium rather then uranium to fuel our energy needs. The interest came in part because of the greater availability and more widely distributed quantities of thorium in the earths crust. In addition the a thorium based fuel cycle seem to be significantly, despite nay-sayers, more resistant to diversion to weapons production (proliferation.) Recent studies, both at design phase and pilot plant size demonstrations have demonstrated that in an appropriate rector, the thorium based fuel cycle can both grow its own fuel, and burn up uranium fuel cycle based spent fuel treated as waste.

There are also detail assessments of the costs of such alternative technology, which I’ve ignored in this article. Why? For the most part in my studies, all such cost studies overestimate the end costs. This is in part due to the use of pessimistic values of input data and the use of conservative modeling assumptions.

Figure 1. The (simplified) Thorium Fuel Cycle

The discussions that follow are encapsulated gleanings from the main articles I reference, all published in the last several years. In addition, I skimmed my collection 60+ document collections on the thorium fuel cycle reference that, go back to 2005.

I attempted, within the time I had available, to determine whether any of the older ‘paradigm’ basic assumptions had been wrong in their conceptualization of thorium use for energy production. I found none, however many of the earlier documents differed by their use of then less accurate state-of-the art models. Such models continuously evolve, get challenged and improve  to get more accurate. Technologically, we both get smarter mathematically and computing power grows in accord to Moore’s Law.

In parallel to computational development, more realistic definition of model inputs and available experimental data based on the physics, and chemistry of elements of the thorium fuel cycle have occurred.

The Basic Historical Nuclear Energy Facts as I Know Them

Nuclear energy worldwide is based on a Uranium Fuel cycle.

The non-Thorium elements in this article can be either researched in Wikipedia or just googled. They are no a part of my normal reference practices which tend to focus heavily on the main topics under discussion in these blogs. I do suggest to stick with engineering and science oriented sites or those of the much larger international site that under obsessive peer review by anti-nuclear types. It is better to check out facts than to fight the belief battle with those who have received guidance from small voices in their heads or they’re under technology educated neighbors or media fear mongers.

Uranium fuel use for electrical energy generation is a legacy of US and German weapons development during WW II. At that time the US goal was to beat Nazi German to the super weapon punch. The allies won in Europe against Adolf Hitler and the Nazis by convention means including carpet-bombing of bother German cities, factories and infrastructure.

However to win the parallel war with Japan, our leaders decided to use these newly developed atomic bombs against Hiroshima an Nagasaki. This is not the place to deal with this history — its issues, geopolitical and moral. There are library full of such analysis. I include this background to give our less history minded readers a sense of the past.

The use of nuclear science and engineering newly discover during the US’s weapons program evolved rapidly. This was a result of initially, of general then President Eisenhower’s, Atoms for Peace program. It was paralleled or closely followed by a shared US and UN sponsored program to support the growth of nuclear energy for electricity generation with the nations of the world. There was at the time a hope for low cost, perhaps not needing to be metered, electricity.

The lead agency for doing so internationally is the International Atomic Energy Agency [IAEA.]

Again, this is beyond the scope of this article, this did not happen. As a result of a combination of accidents, some deadly, some just scary and a growing sense of nucleophobia, especially in the United States and more recently in Germany, nuclear energy became a dirty word. France, China, India do not think so. Apparently neither do Brazil, Russia and Saudi Arabia and it’s neighbors.

For them electricity from highly regulated and proven ‘catastrophe’ safe, nuclear energy remains a reasonable alternative to their options to deal with population growth, middle class aspirations for standard of living related energy shortages, and with energy security.

Even, when the sound and fury and fear factors die down, Japan will have trouble killing off its nuclear program. On the other hand heads should roll for their intuitional and corporative neglect. While the rest of the world made progress in understanding less frequent accident risks such as natural forces (tornedos – tsunamis – earthquakes) the Japanese corporations in bed with their regulators had their heads in the sand. It’s a time honored tradition — They have shamed the nation; perhaps Seppuku would be honorable.

Thorium Fuel Cycle Pro Arguments

Figure 2 - The Thorium Decay Chain

Enough said as background. Despite problems and issues that temporarily shut down nuclear energy programs and projects, almost all the nations of the world are seeking, if not publicly, to make nuclear electricity usually from uranium and a bit from thorium. In that effort, the Thorium Fuel cycle can perhaps play a key longer term role if I understand that ‘energy’ system.It appear to have been well documented, if not yet fully proven to the naysayer’s or for that matter to regulators around the world,Thorium Fuel Cycle is:

  • Safer
  • Cheaper
  • Proliferation Proof,
  • Creates Minimal high-level Waste
  • Eases recycling existing uranium spent fuel, and of course
  • Aiding the effort to become self reliant in Energy for their industry and transpiration needs.

One could now add:

  • Minimizing Greenhouse Gas production
  • Assuring low cost means of purifying sea or recycled and brackish or polluted water for drinking and agricultural purposes.
  • Lowering Transportation and its associated pollution costs

All of these uses have high-energy demands, usually in the form of inexpensive, reliable, safe electricity

For balance, most of the cons of using a Thorium Fuel Cycle have been specifically leveled the Liquid-fluoride thorium reactor (LFTR) or the to early for it’s time (funding) Pebble Bed reactors.

Therefore I cover both positive and negative aspects of these specific solutions to using a thorium-based thorium, in the section below. Had Pebble Bed not happened in parallel to our recent economic meltdown, it might also have been an alterative.


Future Potential Path(s) Forward

Overview

  • Focus on spent fuel recycling by proven available chemical processing to recover uranium/plutonium for reuse, while minimizing waste and proliferation risks.
  • Progress with Advanced Reactor Design that initially creates intrinsically safe and ultimately inherently safe nuclear energy generation facilities.
  • Make significant International Progress with controlling the various aspects of the fuel cycle (mining though either waste disposal or reuse, to minimize costs to present and future generation, and of course maximize safety.
  • Expedite designing, testing and deploying alternate fuel cycles that avoid the problems caused by our use of uranium or uranium-plutonium fuel  [MOX] to generate electricity.

That’s where Thorium comes into play. In the section that follows I share the pros and cost of developing and ultimately relying on a Thorium based electrical generation cycle for our electrical needs.

The information below, shared at a summary level, described the myriads of pros & cons in slowly switching to a thorium based fuel cycle. These of course have been heavily discussed in both the scientific-engineering literature including the Internet, and on pro-and-con blogs on the issue. Of course adoption, all thing being equal, will likely happened faster in India, and China, … than in the US.

Unfortunately for clean energy advances which include energy independence and closed cycle nuclear power, since we seem to be a ‘fourth world’ (Doc’s New Label) nation with respect to tackling major global problems such as energy independence, climate change, and low-cost abundant safe energy to boot strap our economy and stamp out poverty.

Low cost sustainable energy will play an important role in economic development, especially approaching 2050 or after. India and China are planning very ambitious programs of nuclear power development. Both countries are planning rapid deployment of significant numbers of traditional Light Water and Heavy Water power reactors, while projecting the further development both Fast Liquid Metal Reactors [FLMR]] and Thorium cycle breeder reactors. (Barton I)

More below about thorium based aspects of these reactors types.

 

Liquid-fluoride thorium reactor (LFTR) Pros)

  • From the nuclear physics standpoint, they are potentially, passively safe,
  • Past and present designs, and demonstration plants show that they are mechanically simple
  • These reactor types can be quite compact in size allowing them to used in the manner projected for other modular nuclear reactors or small stand alone factory built rechargeable battery style nuclear reactors/power generator systems.
  • They can in principal be deployed virtually anywhere and protected more ealy han large reactor facilities.
  • In preparing to build LFTRs we will recover valuable medical radioisotopes that could provide early financial return.
  • Operating LFTRs will generate electricity, desalinated water, and generate valuable radioisotopes for NASA and the medical sector where ever it is needed, requiring minimal expensive complex grid systems.
  • The possibility of utilizing a very abundant resource which has hitherto been of so little interest that its abundance has never been quantified properly seems worth investigating fully.
  • The production of power that creates fewer long-lived transuranic elements in the waste.
  • They, based on their nuclear physics, produce significantly reduced radioactive wastes.
  • Although I could not document this statement, I believe (yep the belief word) that the amount of radiation spread if battle hardened reactor is hit, would be about the same magnitude of the spent uranium ammunition were spreading now. If a war situation used nuclear weapons – shells – missiles or bombs…all bets are off. You are dead, end the environment doesn’t master. Gaia will recover in a millennia or two.

LFTR Cons

  • At the current state of knowledge, they have a high cost for fuel fabrication [e.g., due to the presence of 233-Uranium]
  • There are similar problems in recycling thorium itself due to highly radioactive Th-228 (an alpha emitter with two-year half life) is present.
  • There is some concern over weapons proliferation risk of U-233 (if it could be separated on its own), although many designs such as the Russia’s Radkowsky Thorium Reactor addresses this concern. There appear to be safe-cost effective solution to this issue.
  • The technical problems (not yet satisfactorily solved) in reprocessing solid fuels. However, with some designs, in particular the molten salt reactor (MSR), these problems are likely to largely disappear.

Much development work is still required before the thorium fuel cycle can be commercialized This is being done in India and China, The effort required seems unlikely while (or where) abundant uranium is available. In this respect, recent international moves to bring India into the ambit of international trade might or may not result in the country ceasing to persist with the thorium cycle, as it now has ready access to traded uranium and conventional reactor designs

Nevertheless despite the negative aspects that would limit, universally, switching to a thorium fuel cycle, the thorium fuel cycle, with its potential for breeding fuel without the need for fast neutron reactors, holds considerable potential in the long-term. It is a significant factor in the long-term sustainability of nuclear energy.

Gen IV reactor History and Safety Features

These have been universally claimed to be passively safe; that is, they remove the need for redundant, active safety systems. This is in part due to obviating the need for electro-mechanical safety-fail safe feature and any part for human action – The nuclear physics does the job. This is a result of the reactor is design allowing it to both safely handle high temperatures {No melt-down scenario.} The reactor can cool itself by natural circulation and still survive in accident scenarios, which may raise the temperature of the reactor to 1,600 °C.

LFTR type reactors will offer safe, sustainable and efficient nuclear power at a potentially low cost. LFTR and Pebble-bed reactors can also theoretically power vehicles. Why, they would be fail-crash safe, and there is no need for a heavy pressure vessel for containment. Furthermore, the pebble bed heats gas that could directly drive a lightweight gas turbine.

The use of the advanced thorium cycle in a fusion-fission hybrid could potentially bypass the stage of designing and building fourth generation breeder reactors in that the energy multiplication in the fission part allows the satisfaction (achievement) of energy breakeven point and the in magnetic and inertial fusion reactor designs. I have not discussed this somewhat still academic alternative lack of time,

Historically, in the United States, the thorium-fission fuel cycle, which I have not discussed for was investigated over the period 1950-1976 both in the federally funded Molten Salt Breeder 1976 in the Molten Salt Breeder Reactor Studies (MSBR) at the Oak Ridge National Laboratory Reactor (MSBR) at the Oak Ridge National Laboratory (ORNL) as well as in the pilot (ORNL) as well as in the pilot Shippingport fission reactor fission reactor plant.

It has also been used in the High Temperature Gas Cooled Reactor (HTGR) in a pebble bed and a prismatic moderator Reactor (HTGR) in a pebble bed and a prismatic moderator and fuel configurations. General Atomics Corporation (GA) did a large amount of documented-peer review-published work, which the US has ignored but not so the rest of the world.

The General Atomics (GA) Company built two prototype thorium reactors over the1960-1970’s period. The first was a 40 MWeMWe prototype at Peach Bottom, Pennsylvania operated by Philadelphia Electric. The second a 330 MWeMWe at Fort St. Vrain for the Public service of Colorado which operated between 1971 and 1975.

It now appears that the effort to building a Pebble Bed reactor [PBMR ] that was planned in South Africa failed because of lack of Investors/customers, rather then the albeit, large technical and regulatory challenge.

Figure 4. Molten Salt Reactor

.

Because India was outside the Nuclear Non-Proliferation Treaty due to its weapons program, it was for 34 years largely excluded from trade in nuclear plant components or materials that had hampered its development of civil nuclear energy until 2009. Due to these trade bans and barriers, and the lack of indigenous sources of uranium, India has uniquely been developing a nuclear fuel cycle to exploit its reserves of thorium.

Indeed its expertise has made it the premier source of potential thorium fuel cycle expertise, technology and soon workable-licensable reactor designs. Will building thorium based reactor systems come next?

The Molten Salt Reactor [MSR]

The MSR is an advanced breeder concept, in which the coolant is a molten salt, usually a fluoride salt mixture. This is thermally quite hot, but not under pressure, and does not boil below about 1400°C. The higher temperatures enhance the efficiency of energy generation.

Much of this research has focused on lithium and beryllium additions to the salt mixture to enhance safety. The fuel can be dissolved enriched uranium, thorium or U-233 as fluoride salts. Recent international discussion has been focused on the Liquid Fluoride Thorium Reactor, utilizing U-233 which has been bred in a liquid thorium salt blanket and continuously removed to be added to the core.

The MSR concept and design was studied in depth in the 1960s, and is now being revived because of the availability of advanced technology for the temperature-radiation resistant materials and components. There is now renewed interest in the MSR concept in China, perhaps in Japan, Russia, France and even in the USA, and one of the six Generation IV designs selected for further development by DOE’s advanced reactor program is the MSR.

The Anti-MSR View — In his 2009 article, my colleague Arjun Makhijani, entitled Thorium Fuel: No Panacea for Nuclear Power reiterates the widely published concerns about with implementing a commercial thorium fuel cycle. I agree with the listing of problems, so dies the rest of the nuclear engineering community both engineering and commercial.

I do ask, Arjun, what’s new other then trying to involve the public in another nucleophobic red herring. This is an IEER fault that I can seldom find in studies by the staff of the Union of Concerned Scientists who’s work on nuclear and other energy issues I also follow.

 

Conclusions

I leave it to the reader, especially the scientist, engineers, economists and science-educated politicians to think about this. I for one would rather pay a short term penalty (cost) for a safer cost effective, proliferation resistant fuel cycle that released except in mining, no green house gases, than the alternatives and comes closer to solving the HLW disposal problem than to throw that valuable asset away.

If wishes were horses (beggars would ride)and I could perhaps:

  • Convince the City of Richland (WA) and Oak Ridge (TN) to set up a municipal ‘battery reactor’ – Ups, NRC is mostly ignoring the licensing of this reactor, and will doubtless prevent us importing them from the UK.
  • If I were not risk adverse, I could invest heavily in thorium mines. However, by the time that licensing anywhere in the world occurs, these ores would become as inflated as gold, palladium or rare earth element ores are now.
  • Buy a real stake (ownership) of the iron and uranium mines that underground repositories create.

I would seriously consider investing my children’s-grandchildren’s future inheritances – what’s left after my wife and I pass on, or at least half of that amount in such a “certified and licensed’ and default insured ventures.


A Final Thought
— Over the many years I’ve know him, I’ve been troubled by my colleague Arjun Makhijani ongoing finding of problems in nuclear and other energy areas that for the most part can be dealt with minor tuning of the design of a project. Most of which has nuclear concerns when reviewed 3-5 years later, have been proven to be technical challenges rather that fatal flaws or perhaps unconventional red herrings. WIIFT anyone?

Doc

REFERENCES

The Thorium Fuel Cycle, Wikipedia, 2011 http://en.wikipedia.org/wiki/Thorium_fuel_cycle/

All About Thorium, The World Nuclear Association, March 2011.
http://www.world-nuclear.org/info/inf62.html/

Thorium Costs, http://www.thorium.tv site; Undated       http://www.thorium.tv/en/thorium_costs/thorium_costs.php/

Nuclear Power in India, The World Nuclear Association, October 2011
http://www.world-nuclear.org/info/inf53.html/

The Fusion Fission Hybrid Thorium Fuel Cycle Alternative <A Slide Presentation, Feb 2010>. University of Illinois. http://www.intechopen.com/articles/show/title/thorium-fission-and-fission-fusion-fuel-cycle/

Thorium Fission and Fission-Fusion Fuel Cycle, Nuclear Power – Deployment, Operation and Sustainability, by Magdi Ragheb (2011), Pavel Tsvetkov (Ed.), ISBN: 978-953-307-474-0, InTech
http://www.intechopen.com/source/pdfs/19682/InTech-Thorium_fission_and_fission_fusion_fuel_cycle.pdf/

Thorium Fuel: No Panacea for Nuclear Power, By Arjun Makhijani and Michele Boyd, dated for the Physicians for Social Responsibility and the Institute for Energy and Environmental Research [IEER.]            http://www.ieer.org/fctsheet/thorium2009factsheet.pdf/

Safeguards Approaches for Fast Breeder Reactors and Associated Fuel Cycle Facilities, Nuclear Security Science Policy Institure, 2010         http://nsspi.tamu.edu/topical-subsections/research/research-projects/safeguards-instrumentation-fast-breeder-reactors   

The Thorium Fueled Molten Salt Reactor News [MSR] Blog   http://thoriummsr.com/

Nuclear Batteries (e.g., Small Nuclear Reactors) By Eben Harrell Monday, Feb. 28, 2011, Time Magazine.http://www.time.com/time/magazine/article/0,9171,2050039,00.html/

Pebble Bed Reactor — Wikipedia 2011.     http://en.wikipedia.org/wiki/Pebble_bed_reactor/

Uranium-233 {formed in Thorium Reactors } – Wikipedia. 2011. http://en.wikipedia.org/wiki/Uranium-233/

Sidebar Notes

Copyright Notice: Product and company names and logos in this review may be registered trademarks of their respective companies.

Some of the articles cited or quoted in this column are copyright protected – their use is both acknowledged and is limited to educational related purposes, which this column provides.

The author considers, as do many experts, Wikipedia a reliable and accessible site for technical information, provided that the reference cited in the Wikipedia article meets the following standard.

My Standards for References Checks Are the references provided essentially complete or representative of the literature, and relevant?  Do they include both precedent and present work, including any referenced disagreement with any of the article author’s assumptions, methods or views?In addition I always try to glean WIIFT <what’s in it for them?> WIIFT is a neutral characteristic that sets the authors paradigm, some the reader needs to be aware of. It’s like who actually sponsors research, a political add, or ant means of trying to sway you viewpoint – OKAY enough preaching.

By Harry {doc} Babad, © Copyright 2011, All Rights Reserved.

Introduction

Jest a bit of preachin’

I do have an attitude and am seldom politically correct, only well referenced in my sources and always biases to evidence, grey as it might be, in my opinions.  

Note, many of the technologies I share are in various stage of first, development, and are often far from being a commercial success. Their inventors and supporters still have to prove that they are reliable, durable and scalable, Remember There Ain’t No free Lunch and silver bullets too often turn to lead.

When and if you Google the topics in depth, you will find studies saying the inventions/ideas are capable of being commercialized and often as many other studies that are more skeptical because there is no easy way to for them to become reality in our political-economic systems.

Most inventions die at the proof of principal stage, however the ones that count to make a difference survive as commercial success. Even the Chinese government knows that, however they chose to ignore such realty. Government as choosers are almost always losers.

A reminder, conditions, both technical and geopolitical continuously change – So if you’ve made up your mind about either the best way to go, or about its all a conspiracy, move on to the next article in our blog. Today’s favorite is tomorrow unintended consequence and our globe replaced the flat earth.

However, that’s better than sticking one’s head in the sand or believing in perpetual motion. Remember, there’s no free lunch and as a taxpayer and consumer you must always end up paying the piper!

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Titles, As Usual, in No Formal Order, for the New Snippets and Topics

  • ‘Solar Highways’ Transform Our Crumbling Infrastructure Into Something Useful
  • The Rare Earth Elements — Meet the Obscure, Useful Metals Lurking in Products All Around You
  • As Ecosystems, Cities Yield Some Surprises
  • Radioactivity Released in Petroleum or Natural Gas Production — The brave new world of natural gas.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

 ‘Solar Highways’ Transform Our Crumbling Infrastructure Into Something Useful

This is a collation/abstract of several articles dealing to both the potential advantages of Super Highways, aka Solar Highways, and the Western states endeavoring to install them.

At the end of the References on reports of achievements, I share a quick list of the most recent trade war associated references between US solar cell manufactures’ and those in China.

Unfortunately there are two significant problems with what many economist see in this trade challenge before the WTO/WTF.

First in the US and Europe it pit the many installers of solar powered services against the US manufacturers of such panels. These my hundreds of businesses use Chinese crystalline solar panels because not only are they less expensive but also at times reported to be higher in quality and durability then those made by older technology, made in America.

 The second reason this song and dance seems to be farcical, sound and fury signifying nothing, is that it is unlikely the World Trade Federation, will be able to reach a decision in this complex matter, in less that 18 months according to experts at Bloomberg’s. I’ve provided a few references at the end of the main solar related list that provide insight into this mess.

One of the great things about photovoltaics is that all they need is an unobstructed piece of ground, and some basic maintenance, and they pump out electricity all day long. But finding a piece of ground that can be devoted solely to solar collectors can be a challenge, especially in the populated areas that need the power the most, so you will often find solar panels perched atop some structure, where they are exposed to higher winds, and are more difficult to maintain. But the solution to this problem might be on your way to work every day, in the unused spaces that surround our national grid of highways.

Up north in Oregon, as I share below they have been building a some test examples of ‘solar highways‘ that are using the empty space around and alongside roads to generate electricity, and this has been a successful experiment. The solar highways are already supplying a considerable portion of the power that is needed to light a highway around Portland from light that falls on the highway itself. That project, having proven itself, has now spawned more in the area.

But, really, doesn’t it make more sense to build projects like this in places that have a bit more sun than overcast Oregon? What about places like California? If Republic Solar Highways has it’s way, this sensible plan can become a reality, and soon. They plan to use 65 acres of unused roadside land around highway 101 to build a 15-megawatt solar collection network, and with the backing of the California Department of Transportation the project seems on track to break ground within the next year.

Hopefully, this will be just the beginning. There is so much unused land around our nation’s roads that could be supplying a generous flow of electrons to the people around them, rather than just being a money sink. After all, most of this unused space has to be cleared and mowed regularly to prevent fires from breaking out and making a mess of travel. And, looking forward, there are multiple proposals for using the roads themselves as solar collectors. In fact, our roads are currently acting as such efficient solar collectors that they are changing the environment around them by putting off so much heat. There are certainly better uses for that energy, and it’s time we started collecting it.

Okay, we know YOU ride your bike everywhere. But the country’s 4 million miles of roads, and 50,000 miles of interstate highway, probably aren’t going anywhere any time soon. Isn’t there anything productive we can do with this giant car playground? Well, we can cover it with solar photovoltaic panels, so it’s at least providing some energy.

Oregon’s already is testing the idea, installing panel arrays along highway shoulders. Others want to embed the solar panels directly into the road surface, and have already received funding to test the idea. California wants to try it along parts of Route 101.

If you think about it, roads are a perfect place to put solar: They’re already public land, they’ve already been cleared and graded, they’re adjacent to infrastructure like towns and power lines, and they’re super accessible for repair and upgrades. Also, they’re already sitting out in the sun all day.

Mathew Preusch also reports “Here’s another benefit  of today’s sunny weather: The new solar power array at the intersection of Interstates 5 and 205 is breaking power generation records”.

You can track the Oregon “Solar Highway” project’s power output at its nifty home page. As of this afternoon, the site said the 8,000-square foot array was generating about 58 kilowatts, but at mid-day production peaked at closer to 85 kilowatts.

The first of its kind in the country project, installed last year by the Oregon Department of Transportation Portland General Electric, feeds into PGE’s grid. But it is only designed, for now, to supply about a quarter of the power needed to illuminate the interchange.

REFERENCES

ABOUT SOLAR HIGHWAYS

Solar Highways Turn Public Liabilities into Assets, by Aaron Fown, July 18, 2011 Clean Technica Blog.

Solar Highways Transform Our Crumbling Infrastructure Into Something Useful|
BY CHRISTOPHER MIMS, 20 JUL 2011. For the GristList Blog. http://www.grist.org/list/2011-07-20-solar-highways-transform-our-crumbling-infrastructure-into-somet

Oregon’s “Solar Highway” Breaking Records Today. Published: Wednesday, July 01, 2009, By Matthew Preusch, The Oregonian http://www.oregonlive.com/environment/index.ssf/2009/07/oregons_solar_highway_breaking.html

Oregon Installs First Highway Solar Project. Update: Friday, August 08, 2008, 8:04 AM, by Dylan Rivera, The Oregonian http://www.oregonlive.com/environment/index.ssf/2008/08/oregon_installs_first_highway.html

Oregon Monitoring Data (PGE/OR-DOT) on America’s First Solar Highwayhttp://www.live.deckmonitoring.com/?id=solarhighway

Republic’s Super Highways Projects; California Here We Come: http://www.cloverleafsolarhighways.com/sites/

Solar Photovoltaics  – Wikipedia, 2011. http://en.wikipedia.org/wiki/Photovoltaics

SOLAR TRADE WAR REFERENCES ADDENDUM

U.S. Solar Manufacturers Request Duties on Chinese Imports, by Mark Drajem and Eric Martin, October 20, 2011, in Bloomberg Business Week.
http://www.businessweek.com/news/2011-10-20/u-s-solar-manufacturers-request-duties-on-chinese-imports.html

A Trade War With China Over Solar Panels Will Burn US, by Vahid Fotuhi, Oct 30, 2011 I n the National.   http://www.thenational.ae/thenationalconversation/industry-insights/energy/a-trade-war-with-china-over-solar-panels-will-burn-us/

Solar Execs Wary Of Trade War With China, CNET News & Reuters, October 20, 2011.  http://news.cnet.com/8301-11128_3-20123327-54/solar-execs-wary-of-trade-war-with-china/

Solar Panel Trade War, by Tim Worstall, Forbes Contributor, October 23, 2011.
http://www.forbes.com/sites/timworstall/2011/10/23/solar-panel-trade-war/

Solar Trade War Officially Starts Today, by Eric Wesoff: October 19, 2011 at GreenTech Solar   http://www.greentechmedia.com/articles/read/solar-trade-war-officially-starts-today/

U.S. Solar Manufacturers Request Duties on Chinese Imports, by Mark Drajem and Eric Martin, October 20, 2011, in Bloomberg Business Week.
http://www.businessweek.com/news/2011-10-20/u-s-solar-manufacturers-request-duties-on-chinese-imports.html

PS: Not only does this involve China and the US, but also pits a small group American and other non-Asian manufacturers of crystalline solar cell against American would be users of such cells. KISS is not a geopolitical concept. It does not protect our national security interests, but governments mostly make bad technological business decisions. Look what happened solar panel maker Solyndra that follows similar bankruptcy actions by Evergreen Solar and SpectraWatt. It’s a great Google topic!

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

The Rare Earth Elements

— Meet the Obscure, Useful Metals Lurking in Products All Around You

Without the rare earths, there would be no iPods and no hybrid cars. But who has even heard of erbium or ytterbium?

The name rare earths made sense to the 19th-century mind:  rare because it seemed at first that they came only from Scandinavia, and earths because they occurred in an earthy oxide form from which it was exceptionally hard to obtain the pure metal.

Today it is clear that the rare earths are hardly rare. The most common of them, cerium, ranks 25th in abundance in the earth’s crust, one place ahead of homely copper. Yttrium is twice as abundant as lead; all of the rare-earth metals (with the exception of radioactive promethium) are more common than silver. The “earths” part is also misleading. These elements are actually metals, and quite marvelous ones at that. The warm glow of terbium is essential to high-efficiency compact-fluorescent bulbs. Europium is widely exploited to make vivid displays for laptop computers and smart phones. Rare earths also pop up in more unexpected places like baseball bats, European currency, and night-vision goggles.

With their growing popularity comes new value, and even political notoriety. Terbium and europium recently overtook silver in price, reaching $40 an ounce. The growing demand for rare earths has become the subject of numerous government reports and a bill that passed in the House of Representatives. The reason these elements are causing such a stir is not their scarcity but their inaccessibility. Rare earths tend to occur in hard rock such as granites, where they lump together in a uniform way that makes them difficult to extract.

Separating out the desired elements demands a toxic and dangerous process, and China has the best infrastructure for doing so economically. China holds about 36 percent of the world’s 110 million tons of recoverable rare-earth ores, with the rest scattered worldwide, principally in the United States, India, Australia, and Russia. Yet China currently produces as much as 97 percent of the world’s rare-earth oxides, according to the U.S. Government Accountability Office. Pekka Pyykkö, a professor of chemistry at the University of Helsinki, puts it this way: “Not all the deposits are in China, but the processing capacity right now is.”

Supply would not matter if not for demand, and the demand comes  from the unusual electrical properties of the rare earths—or lanthanides, as chemists prefer to call them, because they mostly follow lanthanum in the periodic table of elements. The lanthanides share similar chemical properties because they all react similarly, mostly with their three outer electrons. (An atom’s arrangement of electrons is what determines most of its physical and chemical attributes.) Like copper, iron, cobalt, and other more familiar metals, lanthanides form many colored compounds. The magic happens when those outer electrons change energy states and release visible light. But the rare earths are especially valuable for their property of fluorescence: They can absorb light or ultraviolet rays and re-emit the energy as an eerie glow of certain colors specific to each element. The brilliant emission of red and green is the reason why lanthanides are indispensable components of today’s television sets and compact fluorescent bulbs.

From a technological perspective, a more intriguing trait of the rare earths is that some of them are highly magnetic. Alloyed with other metals, they make extraordinarily strong and compact magnets: perfect for computer hard drives, cordless power tools, microphones, and headphones. An iPod takes a triple sip of rare earths: to store digital music, to re-create it in ear-buds, and to display what is playing. An iron alloy containing terbium and dysprosium has a particularly useful property: It expands and contracts efficiently in the presence of a magnetic field. Sensors, actuators, and injectors commonly use such materials, for instance to regulate the flow of gasoline into an automotive engine.

Okay, ‘nuff said, click though and read on. The last reference I provide focuses on the geopolitics of the rare earth elements, one more global trade conflict to worry about. The previous topic discussed solar cells for energizing our sunnier highways; there to a trade was is underway.

REFERENCES

The Rare Earth Elements By Hugh Aldersey-Williams. From the July-August special issue; Discover Magazine         http://discovermagazine.com/2011/jul-aug/12-meet-obscure-metals-that-lurk-products-all-around-you.

The Rare Earth Elements, Wikipedia, 2011, http://en.wikipedia.org/wiki/Rare_Earth_Elements

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

As Ecosystems, Cities Yield Some Surprises

In Boston, scientists measuring the city’s greenhouse gas emissions have found what they call a “weekend effect,” a clear drop-off in the amount of carbon dioxide entering the city’s atmosphere on Saturdays and Sundays. In Fresno, researchers have discovered that backyard water use increases with wealth, as does backyard biodiversity. And in Los Angeles, ecologists studying the city’s “ecohydrology” have calculated that planting a million new trees, an idea with fairly universal appeal, would have the drawback of increasing water consumption by 5 percent.

The researchers, who presented their findings this week at the  Ecological Society of America’s annual meeting in Austin, Tex., are all involved in a nascent program to understand the nation’s cities, home to 80 percent of the population, as functioning ecosystems. The goal is to educate urbanites about their environment and how they can act to make it more sustainable.

The program, called Ultra, for Urban Long-Term Research Area, is a joint effort of the National Science Foundation and the Forest Service. A total of 21 projects are under way, including two in New York City. In establishing financing (known as Ultra-Ex grants) for exploratory sites in 2009, the science foundation called urban sustainability one of “the greatest challenges to the long-term environmental quality of the nation.”

At a research site in Fresno, Calif., overseen by Madhusudan Katti, an ecologist at California State University’s campus there, the aim is to untangle the interactions between city water policy, outdoor water use at homes and biodiversity to help inform policy. On the average, wealthier households in Fresno use more water in their yards, yet not because the water is more affordable for them: the city has no metering system, so residents pay a fixed monthly rate.

Reducing water use is considered crucial to guaranteeing long-term sustainability, yet Dr. Katti found that using less water could cause local bird diversity to decline.

“Half the population globally lives in cities, but we don’t have a conceptual understanding of how cities work as dynamic systems,” Dr. Katti said. “We need to generate that understanding.”

Nathan Phillips, an ecologist at Boston University who runs one of the city’s two Ultra-Ex sites, told the audience at the conference that his project, which includes rooftop plant experiments both in and outside the city as well as measurements of greenhouse gases, had revealed a “pulsing type of urban metabolism. However, Just as these research sites are beginning to reveal how such urban ecosystems function, federal budget cuts are calling their future into question. There’s more details and a few reference links, online.

Why is such research necessary?
Well Cities are growing like Topsey or Jack’s Bean Stalk according to published references, by international agencies, university demographers, national governments and international charitable organizations. Although estimates vary depending on the grown (migration plus birth-death rations) assumptions made by the demographers and the boundaries used in the predictive models the increase is almost beyond belief.

In 2008 according to the United Nations, half the people in the world lived in cities.

In the 20th Century citied grew 10-forld from 250 million people to 2.8 billion. The UN predicts that by 2050 the world population is expected to surpass nine billion with six billion living in cities.

Cities, not villages or towns, which seem to be defined as urban communities large than one million people.

Many of these urban areas already exceed ten million people or more. For a list of the 20-cities that exceed 10-million in population check Wikipedia (2100) which contains links to the demographic studies.  http://en.wikipedia.org/wiki/List_of_metropolitan_areas_by_population

One would hope that understanding the environmental impacts of urban areas and how to modify them for the better should matter, if not to all of our present readers, then perhaps to their children’s, children.

REFERENCES

As Ecosystems, Cities Yield Some Surprises, By Hillary Rosner, August 11, 2011 for the New York Times for the New York Times
http://green.blogs.nytimes.com/2011/08/11/as-ecosystems-cities-yield-some-surprises/

What Drives Cities’ Runaway Growth? By Felicity Barringer, August 22, 2011 for the New York Times. http://green.blogs.nytimes.com/2011/08/22/the-city-limits-are-expanding-everywhere/

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Radioactivity Released in Petroleum or Natural Gas Production

— The brave new world of natural gas.

An After thought – Doc’s jest scratchin’ an itch.

Perhaps I’m just a dumb chemist, not a philosopher, or politician, but based on demonstrated reality, The Dose Makes the Poison. A fine book with this title by Patricia Frank and M. Alice Ottoboni can be obtained from Amazon http://www.amazon.com/s/ref=nb_sb_noss?url=search-alias%3Dstripbooks&field-keywords=The+dose+makes+the+poinson&x=0&y=0

There are assorted run of the Internet Quotes and Clips I collected in 2010-2011

Radium and other naturally occurring isotopes are a common  concern with any petroleum or gas mining operation.   Radium is a daughter product of uranium and thorium, so they obviously will naturally occur in nature.   The existence of the uranium itself is not the primary concern.

Radium is water-soluble and its salts can concentrate in pipes, valves and other mining equipment generating measurable radiation doses.   Levels can be high enough to set-off radiation detectors at local landfills.  In rare cases, they may approach levels, which require radiation monitoring of the workers … though mainly it requires radiation surveys to ensure that further controls are not necessary.  Since this is a form of Technologically Enhanced Naturally Occurring Radioactive Material (TENORM), it is subject to control at the discretion of the specific state radiation protection agency.   It does not come under the jurisdiction of the Nuclear Regulatory Commission. There indeed is uranium, not enough for use an an ore, but high enough to be of health concerns under some condition in Marcellus Shale

While he uranium concentrations in the geologic formations are too low for economically feasible removable, the concentrating effect of the radium disposition, in addition to its mobilization for a subsurface to surface location, can produce radiological concerns which do not exist in the naturally occurring material. Processes such a fracking to recover natural gas provide an excellent escape route. However, the radiological aspects of the process is definitely not the most significant environmental concern for the process, but it should be addressed as minor part of overall regulation. “Anthony DeAngelo, CHP” ardeangelo@aol.com 10-28-10; Written Pre the current natural gas recovery bonanza

In response, Charles Barton, a knowledgeable and well-respected Philosopher of Science and Technology and science history author responded on Oct 28, 2010 [ANS SocialMedia.] He is also the author of the Nuclear Green blog, which serves as a forum for separate ng science fro m mere belief,

“Uranium found in Marcellus shale.] Note these deposits are also one of the potential premier sources of natural gas by fracking.

Michael, I (Barton) discussed the potential role of fracking shake,  in Uranium extraction last March in a post titled ‘Radon as harbinger of a cornucopia.”  I wrote: A November 2009 story in Pro-Publica, titled Is New York’s Marcellus Shale Too Hot to Handle. It states, …The information comes from New York’s Department of Environmental Conservation, which analyzed 13 samples of wastewater brought thousands of feet to the surface from drilling and found that they contain levels of radium-226, a derivative of uranium, as high as 267 times the limit safe for discharge into the environment and thousands of times the limit safe for people to drink.”

To which I added; So it is clear that the presence of radon indicates the presence of uranium and/or thorium, and since radon has no other natural source, finding a lot of radon, enough to be dangerous means that a lot of uranium and/or thorium must be around.

And then I pointed to the implications of fracking for uranium mining:

A major limitation to the in situ approach would seem to be that while there is a whole lot of uranium and thorium locked up in shale rock, shale is not permeable, and thus not currently seen as a candidate for in situ mining. That is where fracking comes in.     – Charles Barton

Doc Sez: Google “Marcellus Shale + Natural Gas” It’s not just uranium that of interests in these tight shale deposit.  Perhaps the purveyor of this misinformation should be invited to drink “purified” bottled water, from fracking for natural gas. After all turn about is fair play.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

 Endnotes

Copyright Notice: Product and company names and logos in this review may be registered trademarks of their respective companies.

Some of the articles listed in this column are copyright protected – their use is both acknowledge and is limited to educational related purposes, which this column provides. Since they are likely covered by the Creative Commons Attribution-ShareAlike License.

Sources & Credits:  — Many of these items were found by way of the links in the newsletter NewsBridge of ‘articles of interest’ to the national labs library technical and regulatory agency users. NewsBridge is electronically published by the Pacific Northwest National Laboratories, in Richland WA.  If using NewsBridge as a starting point, I follow the provided link to the source of the information and edit its content (mostly by shortening the details) for information for our readers. I also both follow any contained links, where appropriate, in the actual article, and provide you those references as well as those gleaned from a short trip to Google-land. Obviously if my source is a magazine or blog that the material I work with.

In addition, when copying materials that I cite, I do not fill the sourced ‘quoted’ words with quotation marks, the only place I keep quotes intact is where the original article ‘quotes’ another secondary source external to itself.  Remember, when Doc sticks his two bits in, its in italics and usually indented.

Article selection (my article – my choice} are obviously and admittedly biased by my training, experience and at rare times my emotional and philosophical intuitive views of what works and what will not… But if you have a topic I neglect, send me feedback and I’ll give it a shot. … And yes I trust Wikipedia, but only if I’ve checkout most of an articles references for bias and accuracy! Since my topic segments are only a partial look at the original materials, click on-through the provided link if you want more details, as well as <often> to check out other background references on the topic(s).

In Closing

Readers please read about my paradigms views, prejudices and snarky attitudes at:

https://mhreviews.wordpress.com/2010/05/23/the-greening-continues-a-column-intro-may-23-2010/

I always find it appropriate, as 75 year old iconoclast and cynic, to step back as I read and WIIFT – No it’s not something new to smoke; just the compulsion to ask what’s in it for them. It’s okay to have a hidden agenda, but agenda’s too hidden discomfort me. In addition, most have no relationship to solving the problem that is being bragged about. “What’s in it for Thee

Yes there will be pain, whatever changes we need to make to get our energy, health, climate, and security system to work, for all Americans and the other effected citizen of the world. Vested interests will scream about require transparency in their claims to truth and the benefits (to whom) their proposals. Casting the light, creating Transparency of their WIIFT is in part key, as is science literacy. I’d rather not have my children and grandchildren grow up either in a slow cooker, or dry roaster oven or go bankrupt staying healthy.

As an example, as alas sea level continues to rise slowly  for now… Tomorrow – tomorrow and a mere decade of tomorrows; perhaps good-bye New York, Seattle, New Orleans and even Los Angeles. I’m too uptight about this to talk about India, China and the flood plains of Africa… extinction is not, in America, a ‘socially acceptable’ subject.

One perspective, mine, is that the Dutch can and do continue protect their land with massive gates and dikes, and the British so far can do so for London. However Yankee ingenuity could not protect New Orleans from what will seem historically as a relatively small and temporary rise in sea level caused by a hurricane named Katrina. Hmmm!

Doc.

QUOTE de Mois

A Computer Lets You Make More Mistakes Faster Than Any Invention In Human History – with the possible exceptions of a handguns and tequila.

Shucks I do love both Patron Tequila straight shots {also Cognac) and my iMac! Anguish, woe is me… I’m doomed to Murphy … Happy Halloween.

http://celebrationgoddess.wordpress.com/2010/05/19/a-computer-lets-you-make-more-mistakes-faster-than-any-invention-in-human-history-with-the-possible-exceptions-of-handguns-and-tequila/